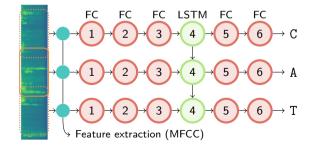
Effects of Layer Freezing on Transferring a Speech Recognition System to Under-resourced Languages

Onno Eberhard and Torsten Zesch

onno.eberhard@stud.uni-due.de



KONVENS · 8 September 2021

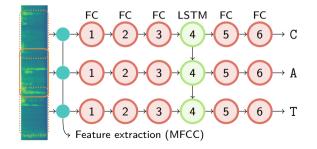
- Most available automatic speech recognition (ASR) systems are built for English
- What about other languages?
 - Problem: Less available data
 - Large models will overfit
 - Small models usually have bad global optimum
- The solution: transfer learning
 - Train a large model on a related task with more available training data (for ASR: English language)
 - Freeze some parameters, thereby reducing model complexity
 - Not new in this context
- We want to understand how the number of frozen parameters changes the outcome.

ASR Architecture

- Mozilla DeepSpeech version 0.7
- Input features: Mel-frequency cepstral coefficients (MFCC)
- Output: Character probabilities over alphabet (using softmax)
- Loss: Connectionist temporal classification (CTC)
- Language model KenLM for better results

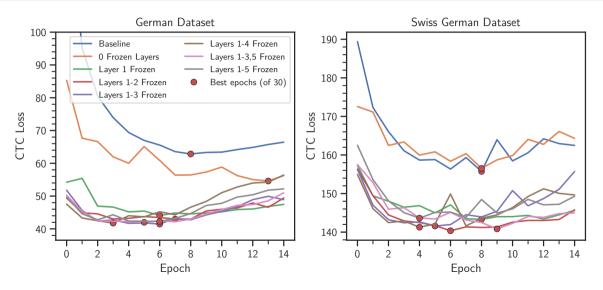
- Deep neural networks need lots of data to perform well
- If not enough data is available, transfer learning often helps
- Alternative to using a less flexible model (e.g. fewer layers)
- First optimize weights for a related "pretext" task (pre-training)
 - In Computer Vision: ImageNet or self-supervised
 - Here: Train on English language ASR dataset
- Fine tuning: Use these optimized weights as a starting point to learn the original task
- "Pure" tranfer learning does not prevent overfitting
- The model complexity still needs to be reduced
 - This is normally done by freezing some parameters of the model
 - In deep learning called "Layer Freezing" (freeze complete layers)

- Assumption: Features learned by early layers are more general than transformations learned by later layers.
 - Has been shown in computer vision, less evidence in ASR
 - We assume this to be true and freeze the earlier layers
- Deep neural network can be thought of as two parts:
 - Feature extractor: First part, general
 - 2 Classifier: Second part, specific to task
- We want to freeze the feature extractor and learn the classifier
- No clear line between the two parts in a deep neural network
- Number of layers to freeze is not clear
 - We experiment with this number.


	Dataset	Hours	Speakers
Pre-training	English	>6,500	?
Transfer	German Swiss German	315 70	4,823 191

- English dataset for pre-training:
 - Trained by Mozilla on mix of many sources, incl. LibriSpeech and Common Voice English
- German dataset: Common Voice German
 - Uterrances 3 5 seconds; collected and reviewed by volunteers
- Swiss German dataset:
 - GermEval 2020 dataset: Parliament speeches; Standard German transcripts
- Language Model (Standard German): Wikipedia, Europarl, crawled sentences.

Training Details


• We do the following experiments:

Baseline Train the complete model from scratch, no transfer. 0 Frozen Layers Weight initialization using pre-trained model, no layer freezing. Layers 1-N Frozen Weight initialization using pre-trained model, freeze first N layers. Layers 1-3,5 Frozen Freeze 5th instead of LSTM layer

	German		Swiss	
Method	WER	CER	WER	CER
Baseline	.70	.42	.74	.52
0 Frozen Layers	.63	.37	.76	.54
Layer 1 Frozen	.48	.26	.69	.48
Layers 1-2 Frozen	.44	.22	.67	.45
Layers 1-3 Frozen	.44	.22	.68	.47
Layers 1-4 Frozen	.45	.24	.68	.47
Layers 1-3,5 Frozen	.46	.25	.68	.46
Layers 1-5 Frozen	.44	.23	.70	.48

Learning Curves

Onno Eberhard and Torsten Zesch

- Very similar results for German and Swiss German
- Best results with 2 3 layers frozen
- Number N of frozen layers seems unimportant, as long as $N \ge 1$
 - Large difference between freezing 0 or 1 layers
 - Even freezing all layers except the last (= linear classifier) yields good results
- No difference between freezing LSTM vs. a normal layer

Interpretation of results

- Seems to indicate the features learned by one language (English) are general enough to apply to other Languages
- Even general enough to provide good features for a linear classifier
- Takeaway: Don't worry about the number of frozen layers as a hyperparameter
- Open: Would it also work if we froze the last instead of the first layers? Or any random subset of parameters with the same degrees of freedom?

Limitations:

- We only looked at closely related languages
- Things might look very different when considering dissimilar languages:
 - Tonal languages like Mandarin or Thai
 - Languages heavily using phonemes non-existent in English
 - etc.
- The features learned by an English ASR system might not always be enough