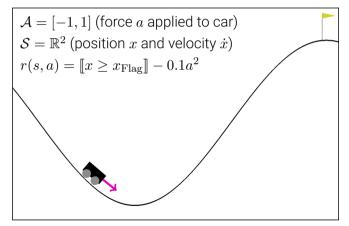
Pink Noise Is All You Need Colored Noise Exploration in Deep Reinforcement Learning

Onno Eberhard¹ · Jakob Hollenstein^{2,1} · Cristina Pinneri^{1,3} · Georg Martius¹

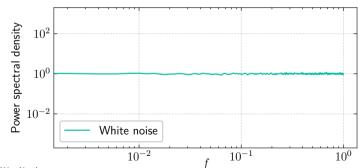
¹Max Planck Institute for Intelligent Systems


²Universität Innsbruck ³ETH Zürich

ICLR 2023 · Kigali, Rwanda

Introduction

- ► Setting: Reinforcement learning for continuous control
- ► Mountain-car problem: Why is exploration necessary?



White Noise Exploration

- Usual method for exploration: add some noise ε_t to actions
- If $\varepsilon_t \sim \mathcal{N}(0, I)$ independently at every time step, then $\varepsilon_{1:T}$ is called **white noise**
 - ► Used as default by many algorithms: TD3, SAC, MPO, ...

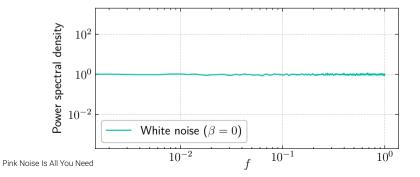
White Noise Exploration

- \blacktriangleright Usual method for exploration: add some noise ε_t to actions
- If $\varepsilon_t \sim \mathcal{N}(0, I)$ independently at every time step, then $\varepsilon_{1:T}$ is called **white noise**
 - Used as default by many algorithms: TD3, SAC, MP0, ...
- The **power spectral density** (PSD) is defined for any signal $\varepsilon(t)$ as

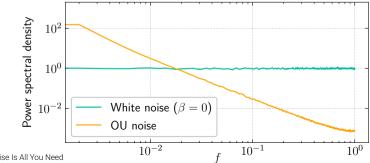
 $|\hat{\varepsilon}(f)|^2$ where $\hat{\varepsilon}(f) = \mathcal{F}[\varepsilon(t)](f)$

- White noise has no temporal correlation ($cov[\varepsilon_t, \varepsilon_{t'}] = 0$)
- ► This makes exploration very slow, simple tasks like Mountain-car challenging

Temporal Correlation

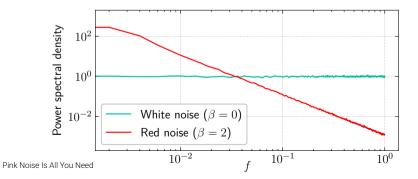

- White noise has no temporal correlation ($cov[\varepsilon_t, \varepsilon_{t'}] = 0$)
- ► This makes exploration very slow, simple tasks like Mountain-car challenging
- Simple fix: Use a temporally correlated noise process ($cov[\varepsilon_t, \varepsilon_{t'}] > 0$)
- ► Popular choice: Ornstein-Uhlenbeck (OU) noise

- White noise has no temporal correlation ($cov[\varepsilon_t, \varepsilon_{t'}] = 0$)
- ► This makes exploration very slow, simple tasks like Mountain-car challenging
- Simple fix: Use a temporally correlated noise process ($cov[\varepsilon_t, \varepsilon_{t'}] > 0$)
- ► Popular choice: Ornstein-Uhlenbeck (OU) noise
- Problem: Very strong temporal correlation \rightarrow poor performance if not needed
- ► Idea: Use intermediate temporal correlation to get best of both worlds

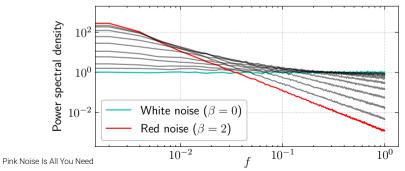

- ► Noise with a PSD proportional to $f^{-\beta}$ is called **colored noise**
- Color parameter β controls strength of temporal correlation

Onno Eberhard

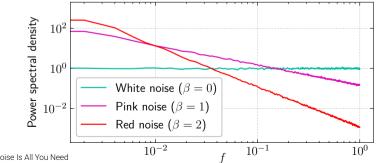
- ► Noise with a PSD proportional to $f^{-\beta}$ is called **colored noise**
- Color parameter β controls strength of temporal correlation
- White noise is colored noise with $\beta = 0$



- ► Noise with a PSD proportional to $f^{-\beta}$ is called **colored noise**
- Color parameter β controls strength of temporal correlation
- White noise is colored noise with $\beta = 0$
- OU noise is related to red noise (CN with $\beta = 2$)

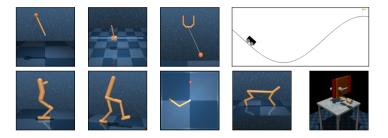

Onno Fherhard

- ► Noise with a PSD proportional to $f^{-\beta}$ is called **colored noise**
- Color parameter β controls strength of temporal correlation
- White noise is colored noise with $\beta = 0$
- OU noise is related to red noise (CN with $\beta = 2$)

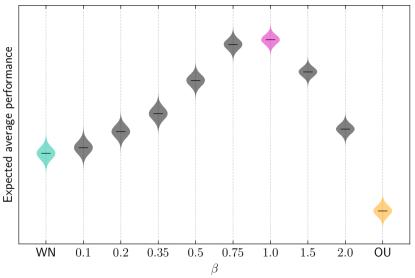


Oppo Eborbard

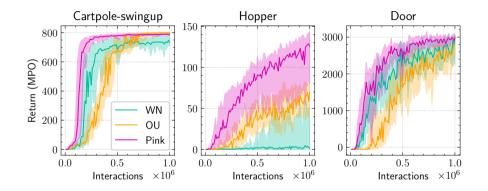
- ► Noise with a PSD proportional to $f^{-\beta}$ is called **colored noise**
- Color parameter β controls strength of temporal correlation
- White noise is colored noise with $\beta = 0$
- OU noise is related to red noise (CN with $\beta = 2$)
- Colored noise with intermediate correlation ($\beta \in [0, 2]$) is cheap to generate



- ► Noise with a PSD proportional to $f^{-\beta}$ is called **colored noise**
- Color parameter β controls strength of temporal correlation
- White noise is colored noise with $\beta = 0$
- OU noise is related to red noise (CN with $\beta = 2$)
- Colored noise with intermediate correlation ($\beta \in [0, 2]$) is cheap to generate


Experiments

► We perform experiments on a number of benchmark tasks using MPO and SAC



- Measure average performance (mean normalized performance across all tasks)
 - Default action noise should work well everywhere

Results

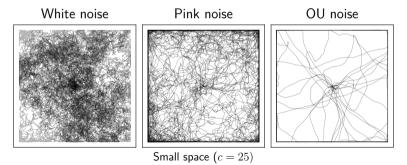
Results

- ▶ Pink noise works well on **all** environments we tested
- Not true for white noise or OU noise!

- Other experiments: β -schedules, random β selection, bandit β selection
- ▶ Pink noise performed better than all these methods

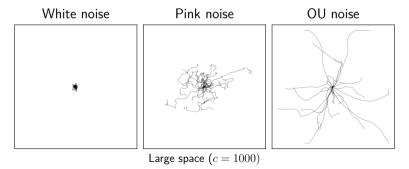
- Other experiments: β -schedules, random β selection, bandit β selection
- ▶ Pink noise performed better than all these methods

Why does pink noise work so well as a default?

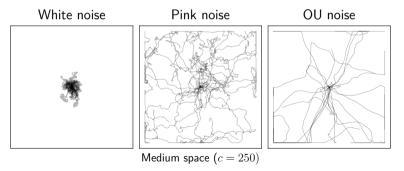

- ► Works very well on some environments
- ► Works well on all environments

Simple 2-dimensional "bounded integrator" environment:

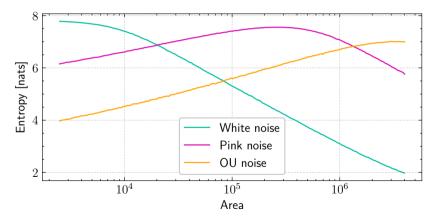
$$s_{t+1} = \operatorname{clip}(s_t + a_t, -c\mathbf{1}, +c\mathbf{1})$$


► Simple 2-dimensional "bounded integrator" environment:

$$s_{t+1} = \operatorname{clip}(s_t + a_t, -c\mathbf{1}, +c\mathbf{1})$$


► Simple 2-dimensional "bounded integrator" environment:

$$s_{t+1} = \operatorname{clip}(s_t + a_t, -c\mathbf{1}, +c\mathbf{1})$$


► Simple 2-dimensional "bounded integrator" environment:

$$s_{t+1} = \operatorname{clip}(s_t + a_t, -c\mathbf{1}, +c\mathbf{1})$$

- Measure exploration by estimating state-visitation entropy
- Repeat for a large range of environment sizes

- Measure exploration by estimating state-visitation entropy
- ► Repeat for a large range of environment sizes

The Power of Pink

- Very similar results on a second simplified environment
- ▶ Pink noise is **general**: less sensitive to the environment parameterization
- Explains average performance results (benchmark experiments)
 - ► Many different tasks with different preferences → general noise preferable

The Power of Pink

- Very similar results on a second simplified environment
- ▶ Pink noise is **general**: less sensitive to the environment parameterization
- Explains average performance results (benchmark experiments)
 - ► Many different tasks with different preferences → general noise preferable

Takeaway

Try pink noise as the default action noise pip install pink-noise-rl

Thank you!

More Info: https://bit.ly/pink-noise-rl

Poster #115