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Abstract

In off-policy deep reinforcement learning with continuous action spaces, exploration
is often implemented by injecting action noise into the action selection process.
Popular algorithms based on stochastic policies, such as SAC or MPO, inject white
noise by sampling actions from uncorrelated Gaussian distributions. In many
tasks, however, white noise does not provide sufficient exploration, and temporally
correlated noise is used instead. A common choice is Ornstein-Uhlenbeck (OU)
noise, which is closely related to Brownian motion (red noise). Both red noise and
white noise belong to the broad family of colored noise. In this work, we perform
a comprehensive experimental evaluation on MPO, SAC and TD3 to explore the
effectiveness of other colors of noise as action noise. We find that pink noise, which
is halfway between white and red noise, significantly outperforms white noise, OU
noise, and other alternatives on a wide range of environments. Thus, we recommend
it as the default choice for action noise in continuous control.
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Chapter 1

Introduction

Figure 1.1 shows a rather bleak landscape. A car sits near the bottom of a sine-
shaped valley. On the right, at the hill’s top, is a flag indicating that this is where
the car is supposed to go. Unfortunately, however, the hill is so steep that the car’s
motor is not powerful enough to climb it if the car starts from rest near the valley’s
bottom. So what is the car to do? It seems like not such a hard problem. The car
simply has to first drive back for a bit before attempting to climb the mountain,
such that it already has some momentum when driving through the valley. Indeed,
this is the correct solution. The added momentum from this maneuver is enough
to carry the car up the mountain and solve the task. This is the “MountainCar”
problem, first introduced by Moore (1990). Though it seems like a trivial problem,
artificial intelligence research has proved again and again that tasks which seem easy
to us, are not necessarily easy for computers (while tasks that are difficult for us,
like Chess playing, are not necessarily challenging to a computer; this observation
is also known as Moravec’s paradox (Moravec 1988)).

Figure 1.1: The MountainCar reinforcement learning task. Screenshot from
OpenAI Gym (Brockman et al. 2016).
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2 CHAPTER 1. INTRODUCTION

To understand why this task is challenging, we have to look at the problem in the
same way an algorithm designed to solve it does. The algorithm (also called the
agent) does not actually see the landscape; this would not be of much use, as it
does not know how to interpret the pixels, never having seen a hill or a car (or an
abstract representation of either). Instead, the state of the environment is encoded
in two features: the car’s position along the x-axis, and its speed. The agent’s task
is then to control the car, by choosing a force to apply to it (which we call the
agent’s action), based on the current state. This, of course, changes the car’s state,
and the agent gets to observe the new state, and respond with a new action. This
is known as the “sensorimotor loop”, and the problem is essentially closed-loop
control. However, we do not now want to manually design a controller, but instead
use reinforcement learning to learn a controller, by trial and error.

How should the agent choose its actions? Seeing the little flag at the top of the
hill was enough for us to infer the task’s goal from our experiences, but the agent
needs to be told in another way. In reinforcement learning, at every time step,
the agent is given not only the current state of the environment, but also a scalar
reward signal. The goal is then defined as maximizing the sum of rewards over the
whole episode (also called the return), which we assume to be of finite length. The
reward has to encode the information of whether the goal has been achieved or not,
so in the MountainCar example, if a certain x-position has been exceeded (i.e., the
car has reached the flag), then the reward is 1 and the episode terminates. Setting
the reward to 0 at every other time step would be enough to encode the original
goal: if the flag is not reached within the time limit, the episode finishes with a
return of 0. However, the actual MountainCar reward is slightly different: at every
time step, the reward is actually

r(s, a) = Jx ≥ xFlagK− 0.1a2, (1.1)

where s = (x, ẋ) is the state, a is the action, and J·K denotes the Iverson bracket
(bool2int function). The first term in the reward encodes the goal of reaching the
flag. The second term, which penalizes large actions, can be thought of as encoding
that, among all solutions which reach the goal, the most “fuel-efficient” one is to
be preferred. In effect, this term acts as a regularizer to shrink the set of optimal
solutions.

So why is this problem challenging? It still seems like a very simple task, and
indeed there are very simple solutions (see, for example, Section C for a method
which exploits the problem’s structure by finding the hill’s resonance frequency).
However, if modern state-of-the-art deep reinforcement learning algorithms, like
SAC or MPO (see Sec. 2.1), are applied to this problem with their default settings,
they fail most of the time.1 The problem is that the reward function in Eq. (1.1)
defines a local optimum. At the beginning of training, an agent does not know
anything about how to behave. It starts out near the bottom of the valley and
selects actions according to its randomly initialized policy. It is very unlikely that
this random selection of actions “accidentally” solves the task, because, as we
discussed above, this requires the coordinated motion of first accelerating to the

1The quantifier “most of the time” is necessary, because in (deep) reinforcement learning,
everything depends heavily on the random initialization (Henderson et al. 2018).
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left to build up some potential energy, and then accelerating to the right to climb
the hill. Thus, at the beginning of training, the reward is approximately equal to
−0.1a2. The reinforcement learning algorithm picks up on this, and learns to apply
less force. This makes it even more unlikely that the goal will be reached, and so,
over time, the algorithm learns to apply no force at all.

This situation can be avoided by exploration. Exploration means that the agent
selects a different action to the one recommended by the policy. Thus, even if the
policy has learned to apply no force, exploratory actions are still taken. However,
the exploratory actions should not be too different from the actions proposed by
the policy, because then the agent will always be led to “off-policy” states far
away from the ones it would visit without exploration. If this happens, the agent
might not learn enough about the “on-policy” states, which are the ones visited in
non-exploratory rollouts, and the policy performance will suffer. In the continuous
control setting we consider, which means that the space of valid actions A ⊂ Rd is
not discrete2, exploration is usually performed by adding some noise to the policy’s
action choice. The most common way to do this, is to sample each action from a
Gaussian distribution centered at the policy’s proposal, where the variance is either
kept fixed, or learned as part of the policy. This is the default exploration strategy
of all state-of-the-art deep RL algorithms we use for our experiments, with TD3
using a fixed variance and SAC and MPO learning it.

The MountainCar example is particularly nice to discuss exploration, because if
the policy has learned to apply no force (a = 0), then the agent’s behavior is com-
pletely determined by the exploration strategy. If the action noise is sampled from
independent Gaussian distributions at every time step, then the exploration noise is
known as white noise. The reason why these algorithms struggle with MountainCar,
is that white noise is uncorrelated, which makes it very slow at exploring the state
space (more details in Section 2.3). It is simple to see why temporal correlation
should help in getting farther: imagine yourself as a 1-dimensional agent standing
on a line, with the goal to explore the space. Your action space is [−1, 1], and the
action determines the direction and size of the next step you will take from your
current position. Exploration behavior is typically symmetric, because without
prior information it is impossible to know whether positive or negative actions are
to be preferred. If your exploration strategy is uncorrelated and symmetric, and
you choose the action at in time step t, which we can assume to be positive without
loss of generality, then in the next time step you will be just as likely to undo your
action and go back by choosing a negative action, as you will be to go further by
choosing a positive action. If neighboring actions are negatively correlated, then
you are more likely to undo your previous action than to build on it (which is
generally undesirable). However, if neighboring actions are positively correlated,
then subsequent actions are likely to be similar, making it more likely to move
further in the same direction.

This problem of white noise has been recognized before, and a commonly used
strategy is to use temporally correlated Ornstein-Uhlenbeck (OU) noise instead

2Usually this set is actually closed and convex; the important property we use is that adding
a small perturbation to an action is still a valid action. However, A does not have to be open
(and indeed should be closed), as the actions are usually clipped to be valid (projected onto A).
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(see Section 2.3). However, on many environments the high correlation of OU noise
is not necessary, and its use only leads to slower learning due to increased off-policy
data. Thus, overall, white noise is the default choice.

In this work, we analyze the effectiveness of using a different kind of temporally
correlated noise as action noise: colored noise. Colored noise generalizes white noise
and introduces a “color” parameter β, which can be adjusted to tune the strength
of the temporal correlation. It can also be related to Ornstein-Uhlenbeck noise,
and we go into more detail in Section 2.4. Colored noise has already been applied
to model-based reinforcement learning (Pinneri et al. 2020), where it has been
shown to be very effective when β was tuned correctly. We address the problem of
setting the color parameter correctly for a given environment in Chapters 3 and 4.
In contrast to the findings of Pinneri et al. (2020), we find that in the model-free
setting, it is not necessarily beneficial to adapt β to an environment. Instead,
simply using pink noise, which can be understood as a noise half-way between
white noise and OU noise, seems to work better than any other strategy we try
out, including a color-schedule, and a Bayesian optimization procedure to select
β. Interestingly, pink noise has also been observed in the movement of humans:
the slight swaying of still-standing subjects, as well as the temporal deviations of
musicians from the beat, have both been measured to exhibit temporal correlations
in accord with pink noise (Duarte and Zatsiorsky 2001; Hennig et al. 2011). In
Chapter 5, we try to explain why pink noise performs so well by analyzing its
behavior on two simple environments.



Chapter 2

Background

2.1 Reinforcement Learning
Formally, a reinforcement learning problem, such as the MountainCar problem from
Chapter 1, is described by a Markov decision process (MDP). A Markov decision
process consists of a set of states S, a set of actions A, an initial state distribution
p(s0), and the environment dynamics p(st+1, rt+1 | st, at). The stochastic decision
rule the agent uses to select an action given a state is called the policy, and it
is denoted by π(at | st). Deterministic policies, commonly denoted µ(st), can be
thought of as a Dirac distribution: π(at | st) = δ(at − µ(st)).

If the policy is fixed, then MDP and policy together form a stochastic process.
Sampling from this process is done via the interaction loop described in Chap-
ter 1:

1. The initial state s0 is sampled from p(s0).

2. The policy selects its action a0 by sampling from π(a0 | s0).

3. The environment responds with a reward and next state: s1, r1 ∼ p(· | s0, a0).

4. At every time step t, the policy selects its next action at ∼ π(· | st) and the
environment responds with a next state and reward st+1, rt+1 ∼ p(· | st, at)

5. This procedure continues until the episode finishes at time step T with the
final state sT and reward rT .1

The sequence τ = (s0, a0, r1, s1, . . . , sT−1, aT−1, rT , sT ) is called the trajectory. Sam-
pling according to the procedure above samples from the trajectory distribu-
tion

pπ(τ) = p(s0)
T−1∏
t=0

π(at | st)p(st+1, rt+1 | st, at). (2.1)

This distribution is depicted as a directed graphical model in Figure 2.1.

1In this text, we only consider the finite-horizon case, and thus also do not mention discounts,
although the use of discounts in finite episodes is perfectly fine in our methods.
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s0 a0

r1

s1 st at

rt+1

st+1· · · sT−1 aT−1

rT

sT· · ·

Figure 2.1: Directed graphical model showing the structure of a Markov
decision process (MDP) with finite horizon T . This model defines the trajectory
distribution pπ(τ).

The reinforcement learning objective is to find a policy which will yield the maximum
expected return:

π? = argmax
π∈Π

J(π) where J(π) = Eτ∼pπ

[
T∑
t=1

rt

]
. (2.2)

What sets reinforcement learning apart from optimal control, is that the environment
dynamics are unknown to the algorithm. This makes the optimization problem in
Eq. (2.2) fundamentally more difficult.

One approach to tackle the RL problem is by learning a model p̂(s′, r | s, a) to
approximate the environment dynamics. These methods are called model-based
reinforcement learning. The model can be learned by running rollouts in the
environment (using a data-collecting policy, e.g. random) to gather interaction tuples
(s, a, r, s′), and then learn the model using standard techniques from supervised
learning, like learning a Gaussian process model (Deisenroth and Rasmussen 2011)
or a neural network model (Nagabandi et al. 2018). Once a model has been learned,
it can be used for planning. A simple planning method is the cross-entropy method
(CEM, Rubinstein 1999). In CEM, n actions are sampled for each of remaining time
steps, from independent Gaussian distributions p(at), . . . , p(aT−1).2 As sampling
actions at random is not necessarily the best strategy for good behavior, these
action sequences are not used directly, but instead their performances are evaluated
using the learned model:

J(at, . . . , aT−1 | st) = Es,r∼p̂

[
T∑

t′=t+1

rt′
∣∣∣ st]. (2.3)

The best m action sequences are kept (where m < n), and the distributions
p(at), . . . , p(aT−1) are refit to these actions. From the modified distributions,
again n candidate action sequences are sampled, and these are again evaluated, and
the best ones are again used to refit the sampling distributions. After repeating
this procedure a few times (not necessarily until convergence), a promising action
sequence will hopefully have been found. Instead of executing the complete action
sequence, usually only the first action is executed. Then, the same planning
procedure is repeated from the next state. Only using the first action of a planned
sequence like this is called model predictive control, and it is especially useful in
cases where the model is not perfect.

2The distributions could be non-Gaussian, but in the continuous control setting, Gaussian
distributions are most common.
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In this work, we don’t use model-based methods, but instead focus on model-free
reinforcement learning. If we select a specific function class Π to represent possible
policies, we can perform policy search by optimizing the problem in Eq. (2.2)
directly. Typically, the function class is described by parameters θ, which could,
for example, represent the weights of a neural network of fixed architecture. In this
case, we normally write the policy parameterized by θ as πθ, and the optimization
problem in Eq. (2.2) becomes

θ? = argmax
θ

J(πθ). (2.4)

If we choose a differentiable policy class, like a neural network, it would be nice to
optimize the objective J using gradient ascent. For this, we would need to calculate
the policy gradient

∇θJ(πθ) = ∇θEτ∼pθ(τ)

[
T∑
t=1

rt

]
, (2.5)

where the trajectory distribution induced by the policy πθ is denoted as pθ. This
might seem hopeless without knowledge of the environment dynamics, but it turns
out that it is possible to estimate the policy gradient simply by sampling trajectories
using the policy πθ:

∇θJ(πθ) =

∫
∇θpθ(τ)

(
T∑
t=1

rt

)
dτ (2.6)

=

∫
pθ(τ)∇θ log pθ(τ)

(
T∑
t=1

rt

)
dτ (2.7)

= Eτ∼pθ(τ)

[
∇θ log pθ(τ)

(
T∑
t=1

rt

)]
(2.8)

= Eτ∼pθ(τ)

[(
T−1∑
t=0

∇θ log πθ(at | st)

)(
T∑
t=1

rt

)]
(2.9)

This result is known as the policy gradient theorem, and it uses the fact that

∇f(x) = f(x)
∇f(x)
f(x)

= f(x)∇ log f(x), (2.10)

as well as that all environment dynamics terms in the trajectory distribution
pθ(τ) (Eq. 2.1) disappear inside the expectation when taking the gradient with
respect to θ. This admits a straightforward algorithm: simply run a few rollouts
with the current policy, and use these trajectories to compute the Monte Carlo
estimate of the expectation in Eq. (2.9). The computed quantity (∇̂θJ(πθ)) is an
estimate of the policy gradient, so we can use gradient ascent to update the policy
parameters:

θ ← θ + α∇̂θJ(πθ) (2.11)

This algorithm is called REINFORCE (Williams 1992), and its main problem is
that the Monte Carlo estimate, while unbiased, in general can have very high
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variance. This problem is commonly addressed by using a baseline: a function
which depends on the state, but not on the action, can be subtracted from the
rewards in Eq. (2.9) to reduce variance. The most common choice for a baseline is
the state value function V (s):

Vt(s) = Epπ

[
T∑

t′=t+1

rt′
∣∣∣ st = s

]
(2.12)

This function can also be learned from trajectories, by computing the Monte
Carlo estimate of the expectation. A combination of the use of baselines, as well
as adjustments to the update in Eq. (2.11) to improve stability, yields popular
algorithms like Trust Region Policy Optimization (TRPO, Schulman et al. 2015)
and Proximal Policy Optimization (PPO, Schulman et al. 2017) which can be used
with neural network function approximators for π and V .3

By casting reinforcement learning as a problem of approximate dynamic programming
(Bertsekas 2017), it becomes possible to use methods other than policy search: the
value function itself can be used to solve the RL problem, by using approximations
to the value or policy iteration algorithm from dynamic programming. The most
famous of these methods is Q-learning (Watkins and Dayan 1992), an approximate
value iteration method. In Q-learning, the policy is not parameterized itself.
Instead, only the state-value function, or Q-function, is parameterized. This
function (Q : S ×A → R) is defined as giving the expected sum of future rewards,
when starting in a given state by performing a certain action. The optimal Q-
function, which is the Q-function of the optimal policy defined by Eq. (2.2), admits
a recursive representation known as the Bellman optimality equation4:

Q?(s, a) = Er,s′∼p(·|s,a)

[
r +max

a′∈A
Q?(s′, a′)

]
(2.13)

Q-learning is the algorithm defined by turning this equation into an iterative
procedure. During rollouts in the environment, collected interaction tuples (s, a, r, s′)
can be used to update a tabular Q-function:

Q(s, a)← Q(s, a) + α
(
r +max

a′
Q(s′, a′)−Q(s, a)

)
. (2.14)

The Q-function can also be represented by a function approximator, like a neural
network. In this case, supervised learning can be used, where the training dataset
is created from many interaction tuples:

D = {(x, y)i} =
{(

(si, ai), ri +max
a′

Q(s′i, a
′)
)
i

}
(2.15)

3Often, finite horizon tasks are simply treated as infinite horizon tasks. This makes it necessary
to use discounts, but then only a single value function V has to be learned, instead of one for
every time step.

4This equation really only makes sense in the infinite horizon setting. This technicality is
mostly ignored in the (deep) reinforcement learning community, so we will ignore it as well.
Usually though, at least a discount factor γ is placed before the max in Eq. (2.13).
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In this form, the Q-learning algorithm is also called fitted Q-iteration. After the
Q-function has been learned, a policy can be constructed to act greedily with
respect to it by choosing the best action at every state:

µQ(s) = argmax
a∈A

Q(s, a) (2.16)

The great benefit of Q-learning over REINFORCE is its sample-efficiency. Q-
learning is an off-policy algorithm: the training data consists of (s, a, r, s′)-tuples.
This data contains no information about the policy that was used to collect it,
meaning that in principle any policy could be used to collect the data, as long as
it approximately covers the same part of the state-action space as µQ. This fact
is exploited in fitted Q-iteration: all interactions are stored in a so-called replay
buffer, from which the dataset (Eq. 2.15) is sampled. This greatly improves sample
efficiency, because old data can be reused many times. REINFORCE, on the other
hand, is an on-policy algorithm, because the rollouts have to be sampled from the
current policy πθ for the policy gradient theorem to hold (Eq. 2.9). After one update
of the parameters θ, all data collected with old parameters can be discarded.

The beginning of the deep reinforcement learning research field is marked by the
Deep Q-Network algorithm (DQN, Mnih et al. 2015), which introduced several
changes to the standard Q-learning algorithm to address stability issues arising with
neural networks as function approximators. The DQN architecture is constructed
for small finite action spaces: the deep neural network that represents the Q-
function takes as input only the state, and outputs the Q-value of each action at
that state. In this work, we are specifically interested in the continuous control
setting, where such an approach is impossible. Reverse architectures, where the
state-action pair is an input to the neural network, are possible, but then the
maximization in Eq. (2.16), which has to be performed at every time step, becomes
prohibitively expensive. This problem is addressed by the Deep Deterministic
Policy Gradients algorithm (DDPG, Lillicrap et al. 2016). Instead of manually
performing the optimization step, a second neural network µ is trained to perform
an approximate optimization of Q. Thus, µ is a deterministic policy, and training
is performed by gradient ascent on the deterministic policy gradient (DPG, Silver
et al. 2014). Algorithms like this, which use both a parameterized value function
and a parameterized policy are referred to as actor-critic algorithms (the policy is
then called the actor, and the value function the critic).

A follow-up work on DDPG, called the Twin-Delayed Deep Deterministic Policy
Gradient algorithm (TD3, Fujimoto et al. 2018), introduced several changes to
DDPG to improve stability and overall performance. At the same time, several
new off-policy algorithms emerged which made use of a framework called maximum
entropy reinforcement learning (MaxEnt RL). In MaxEnt RL, the reinforcement
learning objective (Eq. 2.2) is augmented to encourage a policy distribution with
large entropy at the visited states (which, on the flip side, also encourages the agent
to visit states where the policy has a large entropy). This idea can be related to
the casting of optimal control and reinforcement learning as probabilistic inference
problems (Levine 2018). In particular, the two popular algorithms Soft Actor-Critic
(SAC, Haarnoja et al. 2018) and Maximum a Posteriori Policy Optimization (MPO,



10 CHAPTER 2. BACKGROUND

Abdolmaleki et al. 2018) build on this framework, both of which parameterize a
stochastic policy (as opposed to DDPG and TD3). In this work, we use MPO, SAC
and TD3 for all of our experiments. For SAC and TD3 we use the implementations
from the Stable Baselines3 library (Raffin et al. 2021), and for MPO we make use
of the Tonic RL library (Pardo 2020).

2.2 Bandits and Exploration
Exploration is defined as taking a different action than the “greedy” one:

at 6= argmax
a∈A

Q(st, a) (2.17)

Not exploring, i.e. taking the greedy action, is referred to as exploitation. In action
spaces with more than two choices it is often possible to explore more or less, and
this is particularly the case in continuous spaces, where the degree of exploration
can be measured by the distance (under an appropriate norm) of the chosen action
from the greedy action. We have already touched upon the necessity for exploration
in the first chapter. In most algorithms for continuous control, for instance the
ones we consider (MPO, SAC, TD3), exploration is done by adding noise to the
policy. This method of exploration is treated in the next section. In this section,
we are going to take a look at the problem of exploration itself.

The “exploration vs. exploitation” dilemma is fundamental to reinforcement learn-
ing, and decision-making in general. A simple example by David Silver (Silver
2015) is restaurant selection: if you want to eat out, should you go to your favorite
restaurant (which you know is very good), or should you try a new restaurant
(which might be even better, but is also likely to be worse)? The former option
corresponds to exploitation, and the latter to exploration.

The exploration problem in this example is very different from the exploration
problem we described for the MountainCar task in the first Chapter. In the
MountainCar problem, exploration was necessary to reach new parts of the state
space. The restaurant selection example does not have a clearly defined state
space. In fact, it turns out that the simplest way to model the restaurant selection
problem is by what is called a multi-armed bandit: an MDP with only a single state
and episode lengths of one step. These setups are called (multi-armed) bandits in
suggestion of one-armed bandits (casino slot machines), which, upon pulling a lever,
dispense money according to an unknown internal distribution. The multi-armed
bandit problem can be thought of as trying to find the best slot machine out of
several, each having a different internal distribution. In MDP terms, this means
that a “rollout” consists of a single action (which arm to pull) and collecting a
certain reward (amount of money). The “best” action (arm) is the one with the
highest expected reward.

As the rewards are stochastic, it is not enough to simply try each action once
(quickly “explore” to find the best one) and from then on exploit. Instead, all
actions have to be taken several times to estimate their expected return. In fact,
no finite number of samples is enough to get the precise value of an arm’s expected
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reward. Thus, if one continues pulling arms ad infinitum, one can never stop
exploring. On the other hand, it is also important to exploit the knowledge that
one already has gathered about these distributions. Even when exploring, it may
often be better to pull an arm which has been observed to be almost as good as
the one we think of as best.

These ideas are collected in a precise problem statement for bandits, which is to
minimize regret, defined at iteration t as

t∑
τ=1

r(a?)− r(aτ ), (2.18)

where a? is the unknown best action, aτ is the action played at iteration τ and
r : A → R is the unknown reward function, i.e. r(a) is the expected reward for
action a. Algorithms addressing the problem of minimizing regret are called bandit
algorithms, and they compose a large research field independent of reinforcement
learning (e.g. Lattimore and Szepesvári 2020). With the MDP reduced to only a
single transition, the only problem that remains is the exploration vs. exploitation
problem (and even here, it is not an easy one).

So, how does the bandit setting relate to the exploration problem we faced in
MountainCar, if there is no state space? Even though these problems look very
different on the surface, they are in fact quite similar. After all, the reason why
we want to explore the state space, is to find high reward regions, so in both cases
the problem is really about reward. The reason why the car should, at a given
state s, go right instead of left, even though Q(s, left) > Q(s, right) (i.e. why it
should explore), is for the possibility of achieving a higher episode return, just as in
the bandit setting. The two settings are different, however, in the reason for why
exploitation is necessary. In the bandit case, this is part of the problem definition
(minimizing regret). In reinforcement learning, however, it is common to have a
training stage, where an algorithm, such as MPO, is used to learn a policy from
exploratory rollouts, after which the learning is “done”, and the final policy can be
used without exploration (as learning has finished). Translating this setting into
bandit terms would be an objective of “having the best estimate for which arm is
best” after t iterations, i.e. minimizing

r(a?)− r(â?t ), (2.19)

where â?t is the estimated best arm after t interactions This is quite a different
objective from regret minimization, one which does not punish a lack of exploitation.
However, reinforcement learning agents also need to exploit, and the reason for
this is that the algorithms (MPO and the rest) need the right data to learn good
behavior. The final policy should perform well on the part of the state space it is
likely to encounter during a non-exploratory trajectory. Data sampled from the
non-exploratory policy is called on-policy data, while other data is called off-policy.5
As is also the case in supervised learning, the training and testing data should come
from the same distribution. In the context of RL this means that the (exploratory)

5At least that is how we use the terms here. Words like on-policy and off-policy are used with
slightly different meanings in different contexts, and thus all definitions are somewhat wrong.
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trajectories during the training phase should be approximately on-policy. Con-
cretely, this shows that there is a need for exploitation: too much exploration will
lead to highly off-policy trajectories, inhibiting learning and degrading evaluation
performance.

As we want to tackle the exploration problem in RL, let us start with the simpler
exploration problem described by the K-armed bandit setting. We have already
discussed that an optimal strategy must keep pulling all arms to increase the
accuracy of the expected reward estimates, but that it is also important to exploit
the current knowledge to minimize regret. We can make the problem easier with
a few assumptions on the bandit distributions. If we assume, for example, that
all K reward distributions are Gaussian with equal and known standard deviation
σ (a particularly convenient assumption), there are several algorithms to tackle
the problem of regret minimization in an optimal way.6 Optimal here means that
the regret grows asymptotically as O(log t) (Lai and Robbins 1985). Two methods
which achieve logarithmic regret are Thompson sampling (Agrawal and Goyal 2012)
and upper confidence bound (UCB) algorithms (Auer et al. 2002).

We will discuss Thompson sampling in a bit of detail, as we will use it again in
Section 4.2. To reiterate, the setup is as follows: there are K possible actions
(arms to pull), and upon pulling arm a, we will get a random reward r, sampled
from that arm’s distribution: r ∼ N (r(a), σ). In Thompson sampling, we take a
Bayesian approach and maintain belief distributions for the means of all K reward
distributions. As the reward distributions are Gaussian, we can also model their
means by Gaussian distributions (the corresponding conjugate prior). Thus, the
prior belief distribution is initialized as N (µ |m,Σ), where µ ∈ RK and Σ can be
chosen to be diagonal if we have no prior information about the covariance between
the arms (more on this in Section 4.2). After an arm a has been pulled and a
reward r collected, we can use Bayesian inference to compute the posterior updates
for m and Σ:7

p(µ) = N (µ |m,Σ) (2.20)
p(r | µ, a) = N (r | e>a µ, σ) (2.21)
p(µ | r, a) = N (µ |m+ Σea(e

>
a Σea + σ)−1(r − e>a m),

Σ− Σea(e
>
a Σea + σ)−1e>a Σ) (2.22)

The third equation follows from the first two by Bayes’ rule for Gaussians. But how
do we choose which arm we pull? In Thompson sampling, this is done by sampling
from the belief distribution:

q ∼ N (m,Σ), (2.23)

where m and Σ are up-to-date with the history of past actions and rewards. Then,
we choose the next arm as the one which had the best sampled value:

a = argmax
k∈{1,...,K}

qk. (2.24)

6These algorithms optimal under certain looser assumptions as well.
7Here, we write r(a) as e>a µ, where ea is the ath canonical basis vector, which is a convenient

way to write r(a) as a linear transformation of µ.
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After pulling the arm and collecting the reward, the beliefs are updated and
everything repeats.

The intuitive reason for why this procedure balances exploration and exploitation
is that arms a with a high mean estimate ma are more likely to be selected, as qa
is more likely to be high as well. On the other hand, sampling from these Gaussian
distributions in principle makes it possible for all arms to be selected, but the
higher the estimated mean, or the higher the variance, the more likely it is to be
selected. This last point means that if an arm has been chosen comparatively few
times, it is more likely to be selected, as its variance will be larger (Bayes’ rule
makes the variance of the selected arm shrink). This property is often described as
optimism in the face of uncertainty: if we don’t know a lot about an arm’s reward
distribution, being optimistic means we are more likely to choose it as “it might be
good”. A closely related algorithm to Thompson sampling, UCB (upper confidence
bound algorithm), is also an optimistic method: the arm is chosen not by sampling
from the belief distribution, but by explicitly choosing the arm which has a high
mean and a high variance:

a = argmax
k∈{1,...,K}

mk + λ
√
Σkk, (2.25)

where λ is an optimism hyperparameter (the larger λ, the more will uncertainty be
valued).

These bandit algorithms can solve the exploration vs. exploitation problem opti-
mally. In small finite MDPs, it is also possible to optimally solve exploration, by
augmenting the states to include the agent’s belief about the environment. This
gives rise to the Bayes-Adaptive MDP formalism (Duff 2002), where an optimal
exploration strategy can be derived. However, this quickly becomes intractable
when the state space grows, and so is not applicable to the continuous control
setting we are faced with. Still, it is possible to draw inspiration from bandit
techniques to tackle the exploration problem in deep reinforcement learning. For
example, in exploration based on pseudo-counts (Bellemare et al. 2016; Tang et al.
2017), an uncertainty bonus is added to the reward function, similarly to UCB.
Other methods, like Bootstrapped DQN (Osband et al. 2016), take inspiration from
Thompson sampling: here, Q-functions are sampled in the same way as mean esti-
mates are sampled in Thompson sampling to achieve exploration. There are many
other methods researchers have come up with to tackle the exploration problem,
such as adding noise to the policy parameters (Plappert et al. 2018; Mania et al.
2018), or parameterizing policies based on complex distributions like normalizing
flows (Mazoure et al. 2019). However, the simplest and most common exploration
strategy for deep RL in continuous action spaces is simply adding noise to the
actions.

2.3 Noisy Exploration
The actions proposed by a policy can be perturbed in many elaborate ways. There
are methods which generate a function for each episode that deterministically alters
the action selection (Raffin and Stulp 2020), which learn correlations between the
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action and state space dimensions to induce increasing excitation in the environ-
ment (Schumacher et al. 2022), or which learn an action prior from task-agnostic
demonstrations (Bagatella et al. 2022). The most common approach, however, is to
simply sample an action noise signal from some random process. In particular, this
is the technique employed by all deep RL algorithms we consider in this work.

In algorithms like DDPG and TD3, where the learned policy µ is deterministic, the
action noise signal ε0:T−1 = (ε0, ε1, . . . , εT−1) is simply added to the policy:

at = µ(st) + σεt, (2.26)

where σ is a scale parameter. If εt is sampled independently at every time step, e.g.
from a Gaussian distribution, then the signal ε0:T−1 is called white noise (WN). This
is the prevailing choice of action noise, though it is also common to use temporally
correlated Ornstein-Uhlenbeck noise (ε0:T−1 ∼ OUT ) (Uhlenbeck and Ornstein
1930).

Algorithms which parameterize a stochastic policy, such as SAC and MPO, also use
action noise. In continuous action spaces, the most common policy distribution is a
diagonal Gaussian, represented by the functions µ : S → A and σ : S → A. Here,
actions are sampled at every time step t from the policy distribution according
to

at ∼ N (µ(st), diag(σ(st))). (2.27)

This can equivalently be written as

at = µ(st) + σ(st)� εt, (2.28)

where εt ∼ N (0, I). This is known as the reparameterization trick, and in principle
this technique also applies to other distributions which have a “location” and a
“scale” parameter, as is described by Kingma and Welling (2014). In this case, the
action noise ε0:T−1 is again Gaussian white noise, which is scale-modulated by the
function σ.

White noise is not correlated over time (cov[εt, εt′ ] = 0). In some environments,
this leads to very slow exploration, which in turn leads to inadequate state space
coverage, leaving high reward regions undiscovered. Why is white action noise
slow? We can examine this question theoretically, by making two simplifying
assumptions:

1. The environment is an integrator: after receiving a sequence of actions at
as input, the state is given by xt =

∫ t

0
aτ dτ . These are the dynamics of

a velocity- or step-controlled particle, and are particularly easy to analyze
theoretically.

2. The agent is purely noise (i.e. the policy to which the noise is added is
the 0-function). This is the situation we encountered with MountainCar in
Chapter 1, and it allows us to analyze the exploration behavior in isolation of
a policy. Like the first assumption, this assumption is very strong, but makes
our lives much easier.
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Thus, we are interested in the distance that integrated white noise (with noise scale
σ = 1) achieves as a function of time. In continuous time8, white noise is the
(generalized) time derivative of the Wiener process w(t) and is thus written as ẇ(t).
We want to calculate:

E[|xt|] = E
[∣∣∣∣∫ t

0

ẇ(τ) dτ

∣∣∣∣] (2.29)

= E[|w(t)|] (2.30)

We will use two properties of the Wiener process:

1. w(0) = 0 (almost surely)

2. w(t)− w(t′) ∼ N (0, t− t′) for any 0 ≤ t′ < t

From these properties it follows that

w(t) = w(t)− 0 = w(t)− w(0) ∼ N (0, t− 0) = N (0, t). (2.31)

Thus, xt ∼ N (0, t), and the expectation above is equal to

E[|xt|] =
∫ ∞

−∞
|x| N (x | 0, t) dx (2.32)

= 2

∫ ∞

0

xN (x | 0, t) dx (2.33)

The last expression is the expected value of the half-normal distribution, which is
known to be

√
2
π
σ (Leone et al. 1961), where σ is the standard deviation of the

Gaussian (here,
√
t). Thus, we can conclude

E[|xt|] =
√

2

π
t. (2.34)

In other words, the exploration behavior induced by white action noise on the
integrator environment will only reach distance proportional to the square root
of the number of time steps. It is easy to see why on many environments this
exploration behavior is not sufficient to discover far away high reward regions in
the state space.

There is, however, a simple solution: temporally correlated action noise (such
that cov[εt, εt′ ] > 0). One example of a temporally correlated noise process is
Brownian noise, which is just another name for integrated white noise, which we
just analyzed. So, what would happen if we were to use Brownian noise instead
of white noise as action noise on the integrator environment? In this case, the
actions themselves are sampled from a Wiener process: at = w(t). To calculate the
expected distance reached under these actions, we can first write the resulting state

8In retrospect, these derivations would have been easier and more relevant in discrete time.
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as an Itô integral:

xt =

∫ t

0

aτ dτ (2.35)

=

∫ t

0

w(τ) dτ (2.36)

= (τ − t)w(τ)

∣∣∣∣t
τ=0

−
∫ t

0

(τ − t)ẇ(τ) dτ (2.37)

=

∫ t

0

(t− τ) dw(τ) . (2.38)

Here we used partial integration with f(τ) := τ − t, f ′(τ) = 1 in step (2.37), and in
step (2.38) we used the property w(0) = 0 from above and wrote ẇ(τ) dτ as dw(τ).
It is clear that the state is still distributed according to a zero-mean Gaussian, as
the integration (2.35) can be seen as the limit of a sum of zero-mean Gaussians.
The variance can be found by making use of Itô isometry:

var[xt] = E

[(∫ t

0

(t− τ) dw(τ)

)2
]

(2.39)

=

∫ t

0

E
[
(t− τ)2

]
dτ (2.40)

=

∫ t

0

(t− τ)2 dτ (2.41)

=
1

3
t3 (2.42)

To find the expected distance, we again make use of the known expected value of
the half-normal distribution:

E[|xt|] =
∫ ∞

−∞
|x| N (x | 0, 1

3
t3) dx (2.43)

=

√
2

3π
t3. (2.44)

Thus, Brownian action noise explores the state space much faster than white
noise.

However, it turns out that Brownian noise is unsuitable to use as action noise
in most situations. The reason for this is that it is not stationary: the variance
increases without bounds over time, as can be seen in Eq. (2.31). As most real
action spaces are bounded, this behavior is not ideal. Thus, it would be great if
we could augment Brownian noise somehow to make it stationary. This is exactly
what Ornstein-Uhlenbeck (OU) noise (Uhlenbeck and Ornstein 1930) does. OU
noise is defined by the stochastic differential equation (SDE)

dxt = −θxt dt+ σ dwt , (2.45)

where wt is again the Wiener process and σ is a scale parameter. If θ = 0, then this
equation defines Brownian noise (integrated white noise). However, setting θ > 0
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makes this noise stationary, and thus suitable for use as action noise (a typical
choice is θ = 0.15). OU noise was actually recommended by Lillicrap et al. (2016)
as the default type of action noise for DDPG, and has been shown to lead to a
significant increase in state space coverage (Hollenstein et al. 2022)

The easiest way to sample from an OU process is to just simulate the SDE using
Euler’s method, i.e. by simply discretizing:

x[t+∆t] = x[t]− θx[t]∆t+ σε, (2.46)

where ε ∼ N (0,∆t) (see property 2 of the Wiener process). Indeed, this is the
method used by the Stable-Baselines3 library (Raffin et al. 2021) which we use
in our experiments. Thus, an Ornstein-Uhlenbeck action noise signal of length
T (ε0:T−1 ∼ OUT ) can be simply generated by sampling T steps from Eq. (2.46).
The exploration behavior of this signal, when added as action noise to a policy,
depends crucially on the choice of the discretization parameter ∆t. We have not
found a discussion of this hyperparameter in the context of reinforcement learning,
e.g. Lillicrap et al. (2016) only mention the parameter θ. In Figure 2.2 we show a
comparison of the exploration speeds of OU noise under different choices of ∆t and
θ on the integrator environment. The mean-reverting behavior of OU noise only
acts on a certain timescale: in the plots we can see that the different θ parameters
only start having different effects after some time. On smaller timescales (small
t∆t), OU noise is almost purely Brownian, which can be seen in the plots as the
OU lines having the same slope as the Brownian noise. On the other hand, on
large time scales (large t∆t), OU noise behaves like white noise, as can also be
seen in the plots when comparing to the white noise slope. Thus, small choices of
∆t both makes the noise more Brownian, but for the cost of very slow exploration
in the beginning. The default choice in Stable-Baselines3 of ∆t = 0.01 strikes a
decent balance, which is also the one we use in all of our experiments (together
with θ = 0.15). OU noise also has a second connection to white noise: it can be
interpreted as a “leaky integration” of white noise, i.e. white noise passed through
a non-ideal low-pass filter. How “leaky” this integrator is, is controlled by the
parameter θ: if θ is very small, then the OU process closely resembles Brownian
noise (i.e., the integrator is ideal), and if θ is very large, then the OU process will
be closer to white noise (i.e., there is no integrator). This can also be clearly seen
in the plot.

As a short aside, we should discuss why it is even valid to add action noise to the
algorithms we consider, especially as we suggest changing the sampling procedure
for stochastic policy algorithms like SAC and MPO, which is a very non-standard
thing to do. Of course, we have to assume that the environment dynamics are
continuous enough that a slight perturbation of the action will not lead to a vastly
different state, but without this assumption, learning itself would be hopeless
anyway. The simple answer is that these algorithms are off-policy (they only rely
on transitions of the form (st, at, rt+1, st+1), see Sec. 2.1), so we can actually select
arbitrary actions and completely ignore the policy if we wish. Thus adding action
noise (no matter which random process was used to generate it) should present no
problem at all. However, this is not completely true. Even though actions may come
from any policy, all algorithms still require the state-visitation distribution of the
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Figure 2.2: The choice of θ, as well as the discretization parameter ∆t,
both have a significant influence on the exploration speed of OU noise on the
integrator environment. The dashed lines for Brownian and white noise are the
theoretical results of Eqs. (2.44) and (2.34), respectively.

sampled trajectories to be approximately on-policy (this is the need for exploitation,
which we discussed in the previous section). This is not exactly the case if the
actions are chosen off-policy, which induces a different trajectory distribution. This
distributional shift can lead to problems with strongly off-policy actions, which is
especially the case when highly correlated (e.g. OU) action noise is used.

For this reason, Ornstein-Uhlenbeck noise was, after it was recommended for DDPG,
abandoned again as the default choice in favor of the more simple white noise for TD3
(Fujimoto et al. 2018). However, as many environments do require more exploration
than white noise delivers, a common strategy is to use white noise by default, and
alternatives like OU noise only when necessary. In this work, our goal is to find a
better strategy, by considering noises with intermediate temporal correlation, in
the hope that these work well both on environments where white noise is enough,
and on those which require increased exploration. In particular, we consider the
general colored noise family of temporally correlated noises, which generalizes both
white noise and Brownian noise (in this context called red noise).

2.4 Colored Noise
Definition 1 (Colored noise). A stochastic process is called a colored noise process
with color parameter β, if the signals x(t) drawn from it have the property that

|x̂(f)|2 ∝ f−β, (2.47)
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where x̂(f) = F [x(t)](f) denotes the Fourier transform of x(t) and |x̂(f)|2 is called
the power spectral density (PSD).

The color parameter β controls the amount of temporal correlation in the signal.
If β = 0, then the signal is uncorrelated, and the PSD is flat, meaning that all
frequencies are equally represented. Noise of this kind is called white noise, and the
uncorrelated white noise that we encountered in the last section, where all time
steps were independently sampled from a Gaussian distribution, is one example
of colored noise with β = 0. The reason why this noise is called white noise is in
an analogy to light, where a signal with equal power on all visible frequencies is
perceived as white.

Colored noise has an interesting property: integrating a colored noise signal with
parameter β again yields a colored noise signal, only with parameter β +2. We can
easily prove this by making use of the property of the Fourier transform that an
integration in the time domain corresponds to a multiplication with (i2πf)−1 in the
frequency domain. Let v(t) be the original colored noise signal with |v̂(f)|2 ∝ f−β.
Then the PSD of x(t) =

∫ t

0
v(τ) dτ is

|x̂(f)|2 =
∣∣∣∣F[∫ t

0

v(τ) dτ

]
(f)

∣∣∣∣2 = ∣∣∣∣ 1

i2πf
v̂(f)

∣∣∣∣2 ∝ f−2|v̂(f)|2 ∝ f−(β+2). (2.48)

From this, and the definition of white noise as colored noise with β = 0, it follows
that Brownian noise (integrated white noise) is also colored noise with parameter
β = 2. In this context, Brownian noise is often called red noise, because it has
more weight on lower frequencies, which in light corresponds to the red part of
the spectrum. In the center between the uncorrelated white noise (β = 0) and the
strongly correlated red noise (β = 2), lies the intermediately correlated pink noise
(β = 1). A few colored noise signals are shown and compared to Ornstein-Uhlenbeck
noise in Figure 2.3.
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Figure 2.3: Sampled signals from various noise processes with noise scale
σ = 1. It can be seen that red noise and OU noise look very similar.
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The signals in Fig. 2.3 were generated according to the procedure described by
Timmer and Koenig (1995), which allows us to efficiently sample a complete colored
noise signal of a given length T (i.e. ε0:T−1 ∼ CNT (β)). This method is very fast,
as it only requires sampling a Gaussian signal in frequency space, where the PSD
is then shaped, and then transforming it to the time domain via the Fast Fourier
Transform (FFT) (Cooley and Tukey 1965). The implementation we use in our
experiments is provided by the colorednoise Python package.9 An important
property of this noise generation method is that it produces stationary signals.
This makes colored noise of all β suitable to use as action noise according to
Equations (2.26) and (2.28), as the variance stays constant over time. In particular,
this is also true for colored noise with β = 2 if generated this way. Thus, for clarity,
in the remainder of this thesis, we will call β = 2 noise red noise if generated this
way and Brownian noise if we mean integrated white noise (which, as we have seen,
is not stationary). The PSDs of the signals from Figure 2.3 are shown in Figure 2.4.
On the right plot, it can be seen that red noise is very similar to Ornstein-Uhlenbeck
noise. This makes, sense as both can be viewed as stationary versions of Brownian
noise.
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Figure 2.4: Left: The power law trends can be seen in the PSDs of sampled
colored noise signals. Right: Brownian noise, generated by integrating white
noise sampled from N (0, 1), is compared to two related stationary noises:
Ornstein-Uhlenbeck noise, and red noise (both with noise scale σ = 1). The
similarity between OU and red noise is again very visible (compare to Figure 2.3).
Each line shows the average PSD of 500 signals of length T = 1000 each.

Besides stationarity, another nice property of the generation method described
above is that it produces Gaussian colored noise: the signals are marginally identical
to standard Gaussian distributions, i.e. if ε0:T−1 ∼ CNT (β), then

p(εt) =

∫
p(ε0:T−1) dε0 dε1 · · · dεt−1 dεt+1 · · · dεT−1 = N (εt | 0, 1). (2.49)

9https://github.com/felixpatzelt/colorednoise. The Python implementation con-
tained a bug, which among other things made it so the generated “white noise” was temporally
correlated. Our fix of this bug is included as of version 2.1.0 of the package.

https://github.com/felixpatzelt/colorednoise
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For one thing, this means that white noise sampled as colored noise with β = 0
is exactly the same as sampling εt ∼ N (0, 1) independently at every time step,
which is the current default strategy for sampling action noise. Furthermore, it
means that the only difference between other colors and white noise is that other
colors are temporally correlated (i.e. p(εt, εt′) 6= p(εt)p(εt′)). This is important, as
we want to use colored noise to study the effects of temporal correlation in the
action noise signal. The “marginally N (0, 1)” property of the colored noise we
use ensures us that our results are only due to a change in the correlation of the
action noise, not in the scale or shape of the distribution, as this is the same as
of regular Gaussian white noise. In Figure 2.5, the stationarity and “marginally
N (0, 1)” properties of colored noise are shown empirically on the example of pink
noise, and compared to Gaussian white noise (generated via independent sampling)
and Ornstein-Uhlenbeck noise. It can be seen that OU noise is stationary, but not
marginally N (0, 1), as its marginal distribution is much broader.
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Figure 2.5: The colored noise we use as action noise has the same marginal
distribution as independent Gaussian samples. We sampled 3 × 105 action
noise signals of length T = 1000 from each of the following random processes:
independent Gaussian samples (white noise, left), pink noise (center), Ornstein-
Uhlenbeck noise (right). At every time step t we show a histogram density
estimate over action noise values εt. This shows that our results are only due to
the increased temporal correlation of the action noise signals, as the marginal
distributions remain unchanged from white noise.

Like OU noise, colored noise has two parameters: the color parameter β, as well as
the sequence length or “chunk size” T : to get a signal of length t, we can either
generate a signal of length T ≥ t and use a sub-signal of the correct length, or we
could generate several signals (“chunks”) of length T < t and stitch them together.
T plays a similar role to the discretization parameter ∆t we discussed for OU noise:
if T is very small (and we stitch several chunks together to get a signal of length t),
the correlation between time steps gets smaller, and the signal will more closely
resemble white noise, and if T is very large, then the temporal correlation will
also be large. The effect of choosing different chunk sizes T on the pure noise
agent’s behavior on the integrator environment is shown in Figure 2.6. If we are
faced with an infinite horizon task, then we would indeed have to stitch several
(finite-length) action noise signals together. However, as we only consider the finite
horizon setting, where a rollout is always a fixed number of time steps long, we will
simply choose this length as our sampling length, i.e. T = episode length.
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Figure 2.6: Left: The chunk size T has a considerable effect on the generated
colored noise signal (here, pink noise). In our experiments we always use T = t,
where t is the rollout length. Right: The higher the color parameter is, the
faster will colored noise explore the space of the integrator environment.

The arguably more important parameter is the color β, whose impact on the
integrator environment is also shown in Figure 2.6. As this parameter controls
the amount of temporal correlation, a larger β leads to faster exploration, while a
smaller β leads to slower exploration. Thus, colored noise has brought us what we
wanted: a noise type which is valid as action noise due to its stationarity, which
can be efficiently generated, and whose temporal correlation can be tuned to be
higher than white noise’s, but lower than Ornstein-Uhlenbeck noise’s. By setting
0 < β < 2 to get intermediate temporal correlation between white and red noise
(which, as we have seen, is very similar to OU noise), colored noise might present
us with a better default action noise type than white noise. However, it is still not
clear how exactly we should set the color parameter β. After all, our suggestion to
“use colored noise instead of white noise” is actually just the suggestions to “use a
different β”. So the important question that remains is: which β?

Our inspiration to use colored noise as action noise in model-free reinforcement
learning comes from the model-based setting. Pinneri et al. (2020) introduced
the improved cross-entropy method (iCEM). This method is closely related to the
(original) cross entropy method (CEM), which we discussed briefly in Section 2.1.
One of iCEM’s main improvements to CEM was to use temporally correlated
colored noise for action selection instead of the uncorrelated Gaussian samples used
in CEM. Thus, to see how we should choose β, the natural place to start is to see
how Pinneri et al. (2020) chose β for iCEM. The answer is that they kept it as
a hyperparameter, choosing it individually for each task. They found that it is
important to choose the correct value for β for each task, as each one has a certain
“preference”. For example, the “HalfCheetah Running” task required a low β, with
the best performance at β = 0, whereas the “Humanoid StandUp” task performed
poorly with β = 0 and needed a higher value for good results (Pinneri et al. 2020,
Figure S8). These results are not too surprising. In the Cheetah task, the goal is
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to run fast. For this motion, the joints have to move at very high frequencies, so it
makes sense that action noise with larger power in higher frequencies is preferred.
On the other hand, this sort of motion is not required by the Humanoid task,
where the goal is only to stand up. Here, it makes sense that noise which is highly
correlated performs better, as a stand-up process consists mostly of low-frequency
movements.

However, despite these findings in iCEM, it is still possible that it is not necessary
to tune the color parameter in the context of model-free reinforcement learning.
This setting is very different from trajectory optimization: the colored noise samples
are not only shifted and scaled as in iCEM, to directly yield the action sequence.
Instead, we only add a bit of action noise to the actions which are generated by the
policy from a sequence of states. As the states are naturally correlated over time, so
is the action sequence, even without adding correlated noise. In Chapter 3, we will
investigate the necessity of adapting β to the environment and see if it is possible
to find a solution which works well across many tasks without adaptation.

A different question that arises in the RL setting is whether it might be beneficial
to change β over the course of training. If we think again about the HalfCheetah
environment, it might be that the high frequencies are actually more important
once the policy has learned how to move forward at all, for which low frequencies
might even be better. This “curriculum learning” intuition could justify selecting β
according to a schedule or adapting it online while learning the policy.

These considerations lead us to four different schemes for selecting β, which are also
outlined in Figure 2.7. In Chapter 3, we don’t let β vary with time, but instead
keep it constant throughout training. Here, we investigate whether it is necessary
to adapt β to each environment (Sec. 3.2), as is done in iCEM manually, or if
we can find a constant value for β which works well across tasks (Sec. 3.1). In
Chapter 4, we then look at ways to vary β over the course of training. We begin in
Section 4.1 by looking at non-adaptive fashions to vary β, such as using a schedule.
Finally, in Section 4.2, we then try to actively adapt beta to the environment while
interacting with it. For this, we introduce a Bayesian optimization method based
on the Thompson sampling algorithm from Section 2.2.
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Figure 2.7: The most important choice in using colored noise for exploration
is the color parameter β. We can either keep β constant throughout training,
or vary it with time. Additionally, we can either adapt it to the task at
hand, or apply a non-adaptive strategy across all tasks. This leads to four
schemes which are discussed, in approximate order of increasing complexity, in
Chapters 3 and 4 of this thesis.



Chapter 3

Constant Color

Let us start with the easy case: letting β be constant over the course of training.
The best-case scenario would be if there is a value for β which works well across
many tasks and environments, without any need of adaptation. This would make
it very easy to use in practice. We will start by searching for such a task-agnostic
β, as this will give us a simple baseline which we can then try to improve upon in
the remainder of this thesis.

3.1 Non-Adaptive Methods
We proceed by running a set of experiments to find out how well this scheme
can work, using a variety of environments and color parameters. The continuous
control environments we use include the MountainCar implementation in OpenAI
Gym (Brockman et al. 2016), a door opening tasks from the Adroit hand suite
(Rajeswaran et al. 2018), as well as 8 different tasks from the DeepMind Control
Suite (DMC, Tassa et al. 2018). All environments are depicted in Figure 3.1, and
the respective sources and exact IDs are compiled in Table 3.1.

Figure 3.1: The environments we use: Pendulum, CartPole (balance +
swingup tasks), Ball-In-Cup, MountainCar, Hopper, Walker, Reacher, Cheetah,
Door. Images partly taken from Tassa et al. (2018) with permission.
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Environment Source ID

Pendulum DMC pendulum (swingup)
CartPole (b.) DMC cartpole (balance_sparse)
CartPole (s.) DMC cartpole (swingup_sparse)
Ball-In-Cup DMC ball_in_cup (catch)
MountainCar Gym MountainCarContinuous-v0
Hopper DMC hopper (hop)
Walker DMC walker (run)
Reacher DMC reacher (hard)
Cheetah DMC cheetah (run)
Door Adroit door-v0

Table 3.1: Environments used in this work (see also Fig. 3.1).

Sometimes we need to talk about the whole set of environments, which we then
denote as

E = {E1, E2, . . . , E10}.

We chose this rather large set of environments mainly because of its diversity. As
explained in Section 2.4 with the HalfCheetah and Humanoid examples, we suspect
that each environment has a certain preference for the color parameter. Some
tasks will probably be served very well with the default white noise, but others
may not. This diversity of tasks makes it less likely that we get misleading results,
for example by accidentally choosing environments which all happen to work very
well with a specific value of β. We chose all these environments before doing the
experiments, and did not discard any additional ones.

The second variable in these experiments is the color parameter β. We can
only do finitely many experiments, so we need to choose a finite set of values
to try out. We should definitely include white noise (β = 0) to check if the
performance is comparable to the default implementations which draw Gaussian
noise independently at each time step. Red noise (β = 2) should also be included,
to compare to Ornstein-Uhlenbeck noise, as these two noises are very similar (see
Sec. 2.3). Should we include any β > 2? As discussed previously, our goal is to
find an action noise of intermediate temporal correlation, so our main focus should
lie on the interval β ∈ [0, 2]. Additionally, if we assume that the environment can
be modelled as an integrator (such as in the last chapter), or as a double integrator
(i.e. it converts forces or torques to positions), it turns out that colored noise of
β > 2 does not actually manage to significantly increase the speed of exploration
compared to red noise (at least, not when generated according to the method
described in Sec. 2.4). This is shown in Figure 3.2. Thus, we will not consider any
β higher than 2.

What about negative values of β? These signals are well-defined, though they are
a bit strange conceptually: a colored noise signal with β = −2 can be seen as the
derivative of white noise. As we are interested in noise with intermediate temporal
correlation (as explained in Section 2.3), we will not consider any negative β, and
restrict ourselves to the interval [0, 2].
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Figure 3.2: When generating colored noise as described in Section 2.4, the
exploration speed does not increase indefinitely with higher β. It can be seen
that setting β > 2 makes little difference in speed compared to β = 2. Thus, we
don’t try out any β > 2 in our experiments. Here, dashed lines are theoretical
results (see Sec. 2.3), and solid lines are empirical results.

As we can see in Figure 3.2, a perturbation to a β � 2 will cause a much greater
change in the final distance than a perturbation to a β close to 2. For this reason
we don’t choose an equidistant list of values, but instead go for

B = {0, 0.1, 0.2, 0.35, 0.5, 0.75, 1, 1.5, 2}.

Now that we have selected (hopefully appropriate) values for the two variables, it
is time to train some agents and analyze their performance! We use MPO, SAC,
and TD3 for all experiments, but only show the results for MPO in the main text.
The results for SAC and TD3 can be found in Section A. The base implementation
of the MPO algorithm that we use comes from the Tonic library (Pardo 2020) and
the base SAC and TD3 implementations from Stable-Baselines3 (Raffin et al. 2021).
We repeat these experiments with 20 random seeds. The main reason for this
large amount of seeds is that deep reinforcement learning is notoriously difficult
to reproduce (Henderson et al. 2018). Using many seeds helps to make sure that
the results we see are not only due to randomness, but in fact allow us to draw
conclusions about the effectiveness of our methods.

One last thing we need to discuss before coming to the results is how we evaluate
performance. The most important metric for any reinforcement learning method is
arguably the performance of the final policy. This is normally measured by running
several evaluation rollouts with the policy and averaging the returns of these rollouts.
In an evaluation rollout, no exploration is performed. For deterministic policies, this
means that no action noise is added, and for stochastic unimodal policies it means
that the mode of the distribution over actions is taken instead of sampling from it.
A different metric than the final policy performance is the time it takes to reach this
performance. This is the sample efficiency of the algorithm: how many interactions
with the environment are necessary to train until convergence. We are interested in
both final performance and sample efficiency, so we take a hybrid approach: every
10,000 interactions with the environment, we run 5 evaluation rollouts and take
the average of all 5 returns. A complete training always lasts exactly 1,000,000
environment interactions, and we measure performance by averaging the outcome of
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all evaluation rollouts. This is akin to calculating the area under the learning curve.
Thus, for high performance, it is not only important to have high final performance,
but also to be sample efficient and reach this final performance quickly. To be
clear about what exactly is meant by “performance”, we introduce a new notation.
By

perf(E, β)

we mean the performance (according to the averaging of evaluation returns, as
explained above) that results from training an agent (in the main text, MPO) on
environment E with colored noise exploration of parameter β. This is a random
variable, as both the environment E and the training procedure are nondeterministic.
By specifying a random seed s, we can sample from this random variable and get
the deterministic quantity

perf(E, β, s).

Thus, our experiments will, for every environment E ∈ E , and every β ∈ B, result
in a set of performances {perf(E, β, s) | s = 1, 2, . . . , 20}.

In this section, our goal is to find a single value of β that performs well across many
environments. How do we measure performance across environments? We want
something like the average performance over all environments. To compute this,
however, we must first make the performances comparable across environments.
The DeepMind Control Suite tasks are all constructed such that the maximum
rollout return is 1000 and the minimum return is 0. However, the other two
tasks (MountainCar and door opening) have different scales and can also have
negative-valued returns. To make all performances comparable we standardize
the performance on each environment using the sample mean µ(E) and standard
deviation σ(E) computed from all performances recorded on that environment1

(using the same agent, i.e. MPO in the main text). We call this standardized
quantity the “relative performance” perf ′:

perf ′(E, β) =
perf(E, β)− µ(E)

σ(E)
, (3.1)

where the sample corresponding to the random seed s is again denoted perf ′(E, β, s).
It is debatable whether this is the best technique to make the performances
comparable, but it ensures that all environments are on the same scale, and using
all experiments avoids the problem where one “outlier” dominates averages of these
performances. Using this definition, we now want to know the average (relative)
performance over all environments, or

perf(β) =
1

|E|
∑
E

perf ′(E, β). (3.2)

We could sample from this random variable simply by using each random seed
once:

perf(β, s) =
1

|E|
∑
E

perf ′(E, β, s). (3.3)

1This includes all experiments from the whole thesis, not just from this section.
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However, if we sample with replacement, we can get a nicer distribution for perf(β):
by sampling the seed sij uniformly from {1, 2, . . . , S}, where S is the number of
seeds (in out case, S = 20), for each i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . , |E|}, we
can get N approximate samples

perf(β, si) =
1

|E|
∑
j

perf ′(Ej, β, sij) (3.4)

for the average performance perf(β). We can also use sampling with replacement
to get a bootstrap distribution for the expected value of perf(β). If we take S such
samples (where S is again the number of seeds), i.e. we choose sijk uniformly from
{1, 2, . . . , S}, where now k ∈ {1, 2, . . . , S}, and take the average of all S samples,
we get a bootstrapped estimate for the expected value of perf(β, si):

Ê perf(β, si) =
1

S|E|
∑
k

∑
j

perf ′(Ej, β, sijk). (3.5)

Repeating this N times gives us a bootstrap distribution for the expected average
performance.

Now we can finally come to the results of the experiments! In Figure 3.3, the sampled
average performances for each β ∈ B (Eq. 3.4) as well as the bootstrap distribution
for the expected average performances (Eq. 3.5) are shown and compared to the
two baselines white noise (i.e. the default noise) and Ornstein-Uhlenbeck noise. We
can directly see that on this selection of environments, a constant colored action
noise with parameter β = 1, i.e. pink noise, outperforms both baselines by quite a
bit. This is good news: we can improve average performance already by simply
using pink noise instead of white noise as a default choice.
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Figure 3.3: Left: Samples of MPO’s average performance across environments
when using different action noise types. Right: Bootstrap distributions for the
expected average performances. Highlighted are white noise (WN), pink noise
(β = 1), and Ornstein-Uhlenbeck noise (OU). We used N = 105.

Clearly recognizable in Figure 3.3 is a distinct shape in how the chosen β influences
the performance. The performance seems to smoothly rise with increasing β, up
to the point where β ≈ 1. Then it drops again, and β = 2 performs similarly
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to white noise. It seems unlikely that this shape is just a random fluctuation
in the data. In fact, we see a similar shape in the results from SAC and TD3,
though not quite as pronounced (see Sec. A). This gives us further confidence in
the conclusion that pink noise is indeed the better choice, but it also raises the
question of why we see this shape. To answer this, it is important to look at the
performances for the individual environments, to see if the same curve appears on
each environment, or if it is instead an artifact of averaging over many environments.
Of course, the underlying idea is that we want to know if we should adapt beta to
the environments, or if indeed all environments prefer pink noise. The results for
the individual environments are shown in Figure 3.4.
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Figure 3.4: Performances of MPO on each environment in our selection when
using different action noise types. Highlighted are white noise (WN), pink noise
(β = 1), and Ornstein-Uhlenbeck noise (OU).
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The first thing we see is that we do not see the same curve from Figure 3.3 everywhere.
Instead, each environment looks very different. When looking carefully at these
results, it looks broadly like there are three different types of environment:

1. Higher β → higher performance.
This type includes the MountainCar and Pendulum environments.

2. Higher β → lower performance.
This type includes the Walker and Reacher environments.

3. Peak near β = 1.
On the rest of the environments, the relationship between performance and β
is a bit less pronounced, but on most of these a bell-shaped curve comparable
to that of Figure 3.3 is recognizable. Indeed, on four out of the six remaining
environments, pink noise achieves the best median performance. Of course,
these results are noisier and the bell curve is much less pronounced than in
Figure 3.3, but the underlying cause could still be the same.

So why do we see these curves? The first type is easy to explain. We have already
discussed why MountainCar might benefit from high values of β in Chapter 1.
The Pendulum task is very similar: in both of these tasks the challenge is to
“swing up” a mass with limited force (a form of underactuation), with a sparse
reward once a certain threshold has been passed. It makes sense that exploration
noise which is dominated by low-frequency components will make it easier to
“accidentally” accomplish this. One way to look at this is that for successfully
swinging an oscillator up, the best force signal should excite the oscillator at its
resonant frequency. In these settings, the resonant frequencies of both the mountain
in MountainCar and of the pendulum are relatively low, such that white noise alone
will not be able to achieve a high amplitude. We will return to this discussion in
Chapter 5. The intrinsic correlation of the policy’s action sequence can sometimes
still solve the task, as is seen from the white noise results on Pendulum, but the
correct action noise can make a very large difference. In general, tasks which
only really require exploration can be expected to benefit from highly correlated
action noise, be it either in the underactuated “swing-up” setting described here,
or in settings where it is important to reach a high distance in a short amount of
time.

What about the second type? This one is not quite as straightforward. We have
already discussed the main problem with strongly correlated noise in Section 2.2:
high action noise correlation will lead to a more off-policy trajectory distribution.
This off-policy data then hinders learning which results in low performance. To
make this more concrete, how exactly is this distributional shift manifested in the
two environments of “second type”, Walker and Reacher? The reacher consists
of an arm with a single joint in the middle (see Fig. 3.1). The task is to reach a
small circle somewhere in the arm’s two-dimensional range, with a sparse reward
once the arm’s tip is inside the circle. For early rollouts it is not clear if colored
noise makes any difference, but once the policy has approximately learned to reach
the circle, highly correlated action noise might lead to a situation where a good
policy almost never hits the circle, getting 0 reward. If this happens, it would tell
the policy that it is doing something wrong, and it will not be able to improve
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itself. For the walker environment, highly correlated noise might cause the walker
to fall over. If this does not happen on-policy this is again a serious distributional
shift, explaining why learning becomes difficult. Theses are only guesses about
what the concrete problems of highly off-policy data are in these environments. We
can observe that high correlation actually leads to problems on all environments,
except the two of first type. So what is really special about the two environments
is not that high β perform badly, but that low β perform well.

This is not the case on the majority of environments: the “third type”. There is
a simple explanation for why we see curves which peak near β = 1. These tasks
might simply suffer from the difficulty of underactuation (making low β perform
poorly) as well as requiring data that is not too off-policy (making high β perform
poorly). A different point of view is that high β and low β lead to different kinds
of exploration. High β, being good at bringing an agent far and discovering high
reward regions, are useful for a sort of global exploration. On the other hand, low
values of β will not lead the agent far from where the policy would go without
noise. But it does provide some variance in the trajectory distribution, which
can (through a sort of local exploration) optimize finer details of the trajectory.
This might paint a somewhat simplified picture, but it is still reasonable to expect
most environments to require both global and local exploration. As pink noise has
intermediate temporal correlation, it can be expected that it can provide a mixture
of both types of exploration, making it a better choice on these environments than
white noise or OU noise, which are both only good at providing one of the two
types. We will return to this discussion in Section 4.1, as well as in Chapter 5.

How do these results on the individual environments relate to the general trend we
saw in Figure 3.3? This trend can be easily explained now: if some environments
prefer high β, some prefer low β and others prefer β ≈ 1, then averaging these
preferences will naturally yield the bell-shaped trend line that we observe. A
different hypothesis for why the preferences of environments of third type look
similar to the overall preferences, is that it may be for the same reason. Maybe these
environments are a bit more complex than the environments of first and second
type, and already encompass different “subtasks” which themselves prefer only
either high or low β. Then the reason for why some environments themselves prefer
β ≈ 1 may be that they can be seen as an “average” over more simple subtasks,
and so the same bell-shaped curve appears. We will return to this hypothesis in
Chapter 5.

What final conclusions can we draw from this set of experiments? It seems to be the
case that pink noise is a very good choice in general. On almost all environments it
outperforms both white noise and Ornstein-Uhlenbeck noise. The learning curves
comparing pink noise to both baselines are shown in Figure 3.5. However, even
though some environments prefer pink noise over the other colors, many prefer
a different noise, such as white noise or Brownian noise. Thus, it seems to be a
good idea to try and find out which noise an environment prefers and then adapt β
accordingly. This is the subject of the next section.
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Figure 3.5: Learning curves on MPO (median and interquartile range of
evaluation returns) of the two baseline action noise types white noise (WN)
and Ornstein-Uhlenbeck (OU) noise, as well as of pink noise. It can be seen
that pink noise, while not being better than both baselines on all environments,
is the best default choice. It is never outperformed by both white noise and
OU noise, and routinely outperforms white noise (e.g. MountainCar), OU noise
(e.g. Door), or both (e.g. Hopper).
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3.2 Adaptive Methods
In the last section we saw that each environment has its own specific “β preferences”,
which we broadly split into three different categories. Another way to say this
is that β is a hyperparameter of the algorithm to which most environments are
sensitive. This is also what Pinneri et al. (2020) found with iCEM. However, instead
of tuning β manually through an inefficient method like grid search, it would be
great if we can somehow infer a good value for beta directly from the interactions
with the environment, i.e. have some function which takes in trajectories and infers
an optimal value for β.

Before we devise a concrete technique to do this, let us first check how good we
can hope to be with such a strategy. As we still only consider values for β that
remain constant over the whole training, we can actually find this out quite easily
by reusing the data from the experiments of the last section. This data lets us
create an “oracle” estimate for an environment’s best β setting:

β̂?
E = argmax

β
median{perf(E, β, s) | s = 1, 2, . . . , 10}. (3.6)

We estimate the best β for environment E by simply taking the one which performed
best on the first 10 seeds. We can then evaluate the performance of this β on the
remaining 10 seeds; this strategy avoids the sampling bias that would incur if we
were to choose β?

E in accordance to the same seeds that we evaluate on. As we
saw that pink noise (β = 1) was not the preferred choice on all environments, we
should expect this oracle scheme to outperform the “using only pink noise” scheme.
In Figure 3.6, the average performance of this oracle is compared to pink noise,
white noise, and OU noise, as well as to an “anti-oracle”, in which the argmax in
Eq. (3.6) is replaced with an argmin.
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Figure 3.6: The average performance of an oracle β selection scheme is not
significantly better than simply using pink noise.

Interestingly, it looks as if pink noise actually performs almost as good as the
oracle scheme! Ornstein-Uhlenbeck noise even performs worse than the “worst
β” selection, which can be thought of as the most unlucky pick of β for each
environment possible. The learning curves corresponding to the oracle β selection
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are shown in Figure 3.7, where the 4 environments with β̂?
E = 1 (i.e. pink noise is

already the best noise) are omitted. Again, it looks like pink noise and the “best
β” colored noise perform virtually identically on most environments (certainly on
the four not shown). The only two environments where the best β seems to truly
improve the performance are Pendulum and Walker, although the improvement is
not enough to be reflected in the average performance.

0

250

500

750

R
et
ur
n

Pendulum

β̂?E = 2.0
0

50

MountainCar

β̂?E = 2.0

0

200

400

R
et
ur
n

Walker

β̂?E = 0.2

0

500

1000
Reacher

β̂?E = 0.35

0.0 0.2 0.4 0.6 0.8 1.0
Interactions ×106

0

250

500

750

R
et
ur
n

Cheetah

β̂?E = 0.5

0.0 0.2 0.4 0.6 0.8 1.0
Interactions ×106

0

1000

2000

3000

Door

β̂?E = 0.5

WN
Pink
OU
Oracle

Figure 3.7: Learning curves on MPO. Pink noise compares favorably to an
oracle β selection scheme on most environments.

If we cannot even improve performance over pink action noise by running 10
complete trainings with each β candidate and choosing the best performing one, it
seems that there is no point in trying to adapt a constant β to an environment,
and we should just use pink noise everywhere. But why do we get this result?
If we look back at Figure 3.4, we can actually see that Pendulum and Walker
are the only two environments where pink noise is not (almost) the best. This
explains why these are the only environments with significant improvement. But it
does not explain why fitting β to each environment in this way does not improve
performance at all. Looking at Figure 3.4, we see that most environments don’t
prefer β = 1, and of course this is also why β?

E 6= 1 in most cases. So why don’t
the results improve?

The reason is randomness. In the oracle scheme, we select β by using the one which
performs best in a number of trial runs (the first 10 seeds). But, as randomness
plays a significant role in the outcome of any deep RL experiment (Henderson et al.
2018), we are not guaranteed that the best β in the trial runs is equal to the best
β in the test runs (the remaining 10 seeds). To assess if adapting a constant β is
generally worth it, let us examine the randomness involved here.
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The quantity we are interested in is the “best β” on a given environment, measured
in terms of its performance perf(E, β). As explained in the last section, the
performance is a real-valued random variable (of unknown distribution) which we
have access to through a set of i.i.d. samples {perf(E, β, s) | s = 1, 2, . . . , 20}. Thus,
the “best β” on a given environment is also a random variable:

argmax
β

perf(E, β).

This random variable is categorical, as there is a certain probability for each β
in the given list of colors B to be the best, which we call that beta’s “best-ratio”
BR:

BR(E, β) := P
[
argmax

β′∈B
perf(E, β′) = β

]
.

These probabilities are the parameters of the categorical distribution. They can be
interpreted by considering a simplified experiment: if we are given an environment
E and a list B of colors and train once with each β ∈ B, then

BR(E, β) = P[perf(E, β) ≥ perf(E, β′),∀β′ ∈ B]. (3.7)

We can estimate these probabilities using the data from our experiments, using a
similar technique to the estimation of the average performance in Section 3.1. If
we sample the seed sij uniformly from {1, 2, . . . , 20} for each i ∈ {1, 2, . . . , N} and
j ∈ {1, 2, . . . , |B|}, we can get N approximate samples

B̂R(E, β) :=
1

N

N∑
i=1

s
argmax

j
perf(E, βj, sij) = β

{
. (3.8)

These estimated best-ratios are shown in Figure 3.8.

We wanted to know whether the best β of the trial runs is also the best β of the
test runs. We can simplify this question a bit and only consider the situation where
we have a single trial and a single test run. Let us denote the performances of
the trial run as perftr(E, β) and the performances of the test run as perfts(E, β).
These are both i.i.d. random variables; the quantity of interest is thus:

P
[
argmax

β∈B
perftr(E, β) = argmax

β∈B
perfts(E, β)

]
(3.9)

= Eβtr,βts∼argmaxβ perf(E,β) Jβtr = βtsK (3.10)

=
∑
βtr∈B

P
[
argmax

β∈B
perf(E, β) = βtr

] ∑
βts∈B

P
[
argmax

β∈B
perf(E, β) = βts

]
Jβtr = βtsK

(3.11)

=
∑
β∈B

P
[
argmax

β′∈B
perf(E, β′) = β

]2
(3.12)

=
∑
β∈B

BR(E, β)2 (3.13)
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Figure 3.8: Estimated best-ratios (B̂R, blue) and 95%-good-ratios (ĜR95%,
green) of all β values on all environments using MPO. (N = 105)

This gives us two ways to estimate this probability: either by Monte Carlo estimation
of the expectation in Eq. (3.10):

Eβtr,βts Jβtr = βtsK

≈ 1

S2

S∑
s1=1

S∑
s2=1

s
argmax

β∈B
perf(E, β, s1) = argmax

β∈B
perf(E, β, s2)

{
, (3.14)

where S = 20 is the number of seeds, or by replacing BR in Eq. (3.13) with its
estimate B̂R. As the latter method introduces a further source of error due to the
resampling procedure, we report the probabilities computed according to Eq. (3.14)
in Table 3.2, but a nice interpretation of the best-ratios in Figure 3.8 is that the
sum of their squares is the probability that βtr = βts on a given environment.

We can see that MountainCar has by far the highest probability of equality of βtr

and βts. Most environments have an equality probability of around 20%, but of
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Environment P̂[βtr = βts]

Pendulum 0.46
CartPole (b.) 0.18
CartPole (s.) 0.25
Ball-In-Cup 0.24
MountainCar 0.91
Hopper 0.20
Walker 0.21
Reacher 0.19
Cheetah 0.19
Door 0.20

Table 3.2: Estimated probability that the best β of a trial run is also the best
β in a test run, computed according to Eq. (3.14).

course this also depends on the size of B. For us, |B| = 9, so if the performance of
each β were completely random (uniform), we would expect that

P[βtr = βts] =
1

9
≈ 11%. (3.15)

For some environments, the true equality probability is not much higher than this!
This means that these environments are very stochastic: the measured performance
depends heavily on the chosen random seed, which influences which β performs
best. This makes tuning or adapting β to an environment a flawed idea: the
environments don’t have a clear “best β”.

But this reasoning does not show the whole picture. We actually don’t care about
finding the “best β”, we care about good performance. In Figure 3.8 we see that
MountainCar has a clear best β: β = 2. But we already know from Figure 3.4 that
we achieve very good performance on MountainCar with any β > 0.5. So instead
of looking at a color’s best-ratio, maybe we should consider whether a given color
performs almost as good as the best β. One way to define this is what we call the
q-good-ratio GRq of a β on a given environment:

GRq(E, β) := P
[
perf(E, β) ≥ qmax

β′∈B
perf(E, β′)

]
(3.16)

= P[perf(E, β) ≥ q perf(E, β′),∀β′ ∈ B]. (3.17)

If we train one agent with each β ∈ B on the environment E, then GRq(E, β) tells
us the probability that the performance of the agent trained with β is q times
as good as the performance of the best agent. If we choose q large enough, e.g.
q = 0.95, then this can be interpreted as the probability that β is “almost” as
good as the best β. Looking at Eq (3.7) we see that the good-ratio generalizes the
concept of the best-ratio and that

GRq(E, β) ≥ BR(E, β),
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with equality holding when q = 1. The good-ratios can be estimated in a very
similar way to the best-ratios in Eq. (3.8):

ĜRq(E, βk) :=
1

N

N∑
i=1

s
perf(E, βk, sik) ≥ qmax

j
perf(E, βj, sij)

{
, (3.18)

where sij are defined as above. The computed GRs for q = 0.95 are shown in
Figure 3.8 alongside the best-ratios.

Here we see what we would expect for MountainCar: the probability of a β being
“good” increases and is approximately 1 for β > 0.5. The good-ratio gives a new
perspective on whether an environment can benefit from β-adaptation: the more
uniform the good-ratios for a task are, the less it matters which β is chosen, as
all are equally likely to be “good”. But there are two different reasons for why
the good-ratios might be uniform. On the one hand, there are environments like
Ball-In-Cup. In this case, all GRs are roughly equal, and they are also all very
large. This means that, in an experiment where all colors are used to train an agent
each, they will all likely achieve very similar performance. This is not to say that
this performance is necessarily good (they can all be 0), but it means that no β
would be a “bad choice”, because each one has a high probability of performing at
least 95% as well as the “best choice”. On this kind of environment, β adaptation
is thus simply unnecessary.

But something else is going on when all good-ratios are roughly uniform, but have
low value. As an example, we can look at the Hopper environment. The GRs are
a bit less uniform, but still nonzero for all colors. What jumps out is that the
good-ratios are almost equal to the best-ratios here, which is not at all the case
on the Ball-In-Cup environment. This means that the performance on Hopper is
very stochastic. If we train an agent with each color on a task like this, then, if a β
performs “well”, i.e. it is 95% as good as the best β, it is very likely that it indeed
is the best β. Because the good-ratios are still rather uniform, this means that in
every such experiment an almost random β will outperform the others considerably,
making it very unlikely to select the “best” color beforehand. Even though the
underlying cause is quite different, the effect of this is the same as on Ball-In-Cup:
on both of these tasks, we cannot really hope to improve performance by cleverly
adapting β, either because all β are good choices anyway (Ball-In-Cup) or because
all β are bad choices most of the time (Hopper).

The only two environments which are truly selective about the color, in the sense
that there are multiple values of β s.t. GR95%(E, β) ≈ 0, and also the only ones
where pink noise is not (almost) the best choice, are Pendulum and Walker. These
are exactly the two environments where we saw a slight increase in performance
when using the oracle scheme above. On these environments, we have to be
somewhat careful in choosing β. On this selection of environments, pink noise is
evidently the best general choice, and the only color with non-zero 95%-good-ratio
on all environments. We will continue the discussion of adapting beta on the basis
of interactions in Section 4.2, where we see if this is worth it if we let β vary with
time, instead of keeping it constant.
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Chapter 4

Time-Varying Color

Throughout Chapter 3, we have searched for a good action noise color under the
assumption that we should use this color for the whole training process. But, as
alluded to in Section 2.4, it might be beneficial to let β vary with time. In other
words, it is possible that different stages of learning can benefit from different
exploration strategies, i.e. different colors. In Section 4.1, we will look at non-
adaptive time-varying strategies, where we choose β as a function of the rollout
number ahead of training: instead of choosing a single β, we select a list β =
(β1, β2, . . . , βM), where M is the number of rollouts. We don’t try to adapt this
list to an environment, but instead want to find a list which works well across
environments, similar to our goal in Section 3.1. In the last section we concluded
that there is in general no benefit to adapting a constant β to an environment. This
conclusion does not transfer to the case where we let β vary over time. Additionally,
there is no “easy test”, like we applied in the last section, to rule out whether this
is a good idea. Thus, in Section 4.2, we will try to develop a Bayesian optimization
method which adapts β online to the environment on the basis of interactions.

4.1 Non-Adaptive Methods
We have seen that using pink noise as exploration noise generally leads to improved
performance over noise of both higher and lower correlation. To explain the
improvement over white noise, we have argued that many tasks require “global
exploration”: higher temporal correlation in the action sequence generally leads to
a greater state space coverage, which makes it possible to reach certain high reward
regions much more quickly than when using white noise. Why does increasing
correlation even further have a detrimental effect on performance? We have also
tried to explain this. Higher correlation makes the agent move to regions further
away from where it would go without noise. This is of course exactly why it is
beneficial in discovering unknown high reward regions. But this also means that
the trajectories are more off-policy: the state-marginal distributions of the noisy
policy is different from that of the deterministic policy. The higher the correlation
is, the higher will be the difference between these distributions. This distributional
shift is a problem, because at test time, we want the policy to perform well on

41
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the states from its deterministic state-marginal distribution. But the policy has
not actually seen these states that much, because it always collected trajectories
with the correlated noise. In other words, the data used to train the actor and
critic networks does not come from the same distribution as the data at test time.
This is a common problem also in supervised learning, and here we see it in the
context of reinforcement learning. Thus, what is needed for good performance is
not just global exploration, but also “local exploration”. Some trajectories must
be generated close to on-policy, such that the state-marginal distributions from
these trajectories cover the states which are likely to be seen during test time. This
local exploration can be achieved by using action noise with low correlation, such
as white noise.

These two points show why in practice, we need a mixture of both local and global
exploration. White noise (β = 0) is very good at local exploration, but not very
good at global exploration, because it is slow at reaching distance (as we showed
in Sec. 2.3). It can still perform global exploration of course, otherwise it could
not be used as action noise at all, at least in sparse reward settings. However, if
there are high reward regions very far from the deterministic policy’s trajectories,
it will be unlikely that white noise is enough to reach these. On the opposite end
of the color spectrum1, we have red noise: good for global exploration, but not
very good for local exploration, as it produces strongly off-policy trajectories. The
good performance that we observe when using pink noise can be explained by the
fact that pink noise in some sense strikes a compromise between these two types of
exploration. But maybe there is a different way to achieve this compromise and
reach even higher performance, by letting β vary over time.

The parameter β is similar in certain ways to the action noise scale σ, which
is a parameter in algorithms that use a deterministic policy, such as TD3 (see
Eq. 2.26). Setting σ to a large value lets the action noise drive the agent further
away from the no-noise deterministic trajectory. This leads to higher state-space
coverage, but also makes the data more off-policy. In other words, the effects are
very similar to what we see when we increase β instead of σ. On the other hand,
decreasing σ has a similar effect to decreasing β: the global exploration capabilities
drop, but the collected data is more on-policy. As an aside, this also explains why
Ornstein-Uhlenbeck noise performs so much worse than red noise, despite the fact
that these noises are very similar. The reason is that, even though they are very
similar with respect to their temporal correlation (see Fig. 2.4), OU noise has a
much broader marginal distribution than the stationary colored noise we use (incl.
red noise). This can be seen in Figure 2.5, and this makes the trajectories of OU
noise even more off-policy. On most tasks, this leads to worse performance, though
not on MountainCar and Pendulum (the two environments of “first type”), as can
be seen in Figure 3.4.

Of course, for σ the same reasoning as above holds: we need not limit our choice
to a single value of σ. Instead, we can let it vary over time. The most common
way of varying σ is by using a schedule: gradually decrease σ over the course of
training. This is in accordance with the “curriculum learning” analogy we presented

1As every child knows, the rainbow goes white-pink-red.
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in Section 2.4: it seems natural that an agent should conduct global exploration at
the beginning of training to find high reward regions, and perform local exploration
at the end of training to fine-tune its trajectories. Indeed, Hollenstein et al. (2022)
found that using such a schedule often improves final performance over using a
constant value of σ. It stands to reason that a similar scheme should work for β as
well: we can let β go linearly from 2 to 0 over the course of training:

βm = 2
(
1− m

M

)
, (4.1)

where m and M are the current rollout and the total number of rollouts respectively,
and we keep β constant for every individual rollout. Hopefully, it will then gain the
power of red noise at the beginning of training to find high reward regions, as well
as the local optimization power of white noise at the end, to fine-tune trajectories
with nearly on-policy data. On average, we can expect this method to work like
pink noise, as this is the average β. So let’s just try it out! We keep the same
number of seeds, as well as the same sets B and E that were described in Section 3.1.
The resulting learning curves are shown in Figure 4.1, where we compare to white
noise, OU noise and pink noise; average performances are compared in Figure 4.2.
It can be seen that pink noise clearly outperforms the schedule.

One explanation for this outcome is that, even though the scheduling approach
provides a mixture of local and global exploration (and hence outperforms both
white and OU noise), its behavior still very different from that of pink noise.
Looking at the learning curve on the Walker environment, we can see that the
performance starts improving more quickly at a point rather late in training. As
we know that the Walker task prefers low values of β, it is possible that the reason
for this is that at this point βm becomes low enough, such that effective learning
becomes possible. Looking at the Pendulum environment, which we know to prefer
high values of β, we see no such problem. Maybe the average exploration behavior
in this scheduling scheme is comparable more to red noise than to pink noise, and
we should find a different method which brings down β more quickly, for the benefit
of environments like Walker.

We have been looking at the parameter β as a measure of exploration behavior. A
different and perhaps more appropriate metric is that of “speed”. When comparing
white noise to red noise, it is clear that red noise is “faster”: on the integrator
environment it is capable of reaching a much greater distance than white noise in a
given length of time. We have discussed this in Sections 2.3 and 2.4, and it can be
seen in Figure 2.6. The same also holds true for the double integrator environment,
as is evident from Figure 3.2. What we have also already noticed in these plots is
that the difference in the average distance reached by a “pure noise” agent when
using a color β vs. a different color β′ is much greater when β and β′ are small
(� 2) than when they are large (� 0), when the distance |β − β′| stays the same.
This was the reason why we chose a non-equidistant list B of color parameters
to test out. One measure of the “speed” of a color β is the slope of the average
distance log-log plot (which is shown here again in Figure 4.3):

slope =
log∆x

log∆t
(4.2)
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Figure 4.1: Learning curves of the linear color schedule action noise on MPO.
It can be seen that pink noise generally outperforms this method.
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Figure 4.2: The linear color schedule achieves higher performance than the
two baselines of white and OU noise, but is still outperformed by constant pink
noise. (MPO, N = 105)
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Figure 4.3: The influence of β on an agent’s speed on the integrator (left)
and double integrator (right) environments is non-linear. The log-speed is well
approximated by a tanh function.

These lines are straight, but also noisy, as they are obtained through random
sampling. We can estimate the underlying slope by taking the average of the
individual (straight) line segments. These measured “individual slopes” and their
averages are plotted for a set of β values in Figure 4.3. We can see that the averages
follow a smooth curve, which, on the integrator environment, is well (though not
perfectly) approximated by a sigmoid function:

slope∫ ≈ σ(2β) =
1

2
(tanh β + 1), (4.3)

as shown in the plots. On the double integrator environment, we see a very
similar picture. This time, the slopes are offset by a constant of 1, and are well
approximated by

slope∫∫ ≈ σ(2β) + 1 =
1

2
(tanh β + 3). (4.4)

If we fix the temporal distance ∆t between measured positions, then these slopes
are affine transformations of the log-speed:

log
∆x

∆t
= log∆x− log∆t = log∆t(slope− 1). (4.5)

Thus, with the hyperbolic tangent approximation above, the log-speed can be seen
as an affine transformation of tanh β, suggesting that in some settings tanh β is
physically more meaningful than β. In fact, we chose B in Section 3.1 such that
the tanh-transformed values are approximately equidistant (see Figure 4.4).

Now that we have a new measure of exploration behavior (tanh β), maybe it would
be a good idea to design a schedule that is linear in tanh β. Letting tanh β go from
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Figure 4.4: The set B of colors that we chose in Sec. 3.1 is approximately
equidistant on a tanh β scale (and thus, so is their log-speed on the integra-
tor/double integrator environments).

(close to) 1 to 0, we can choose βm according to

tanh βm = 1− m

M
(4.6)

⇐⇒ βm = artanh
(
1− m

M

)
. (4.7)

A comparison of the linear schedule and this artanh schedule is shown in Figure 4.5.
When using the artanh schedule, the average β is now not β = 1 like the linear
schedule, but2 ∫ 1

0

artanh(1− x) dx = ln 2 ≈ 0.69. (4.8)

This gives us hope that the performance on the Walker environment will improve,
as this schedule provides more local exploration behavior.

The results of the artanh schedule experiments are shown in Figures 4.6 (learning
curves) and 4.7 (average performances). Overall, the performances are not much
better than those of the linear schedule. Interestingly, it looks like this schedule may
actually outperform pink noise on both tasks where pink noise is not ideal: Walker
and Pendulum (see Figure 4.6). On most environments however, the schedule is
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Figure 4.5: A comparison of the linear and artanh schedules.

2This improper integral is a piece of cake for modern computer algebra systems.
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Figure 4.6: Learning curves of the artanh color schedule action noise on MPO.
It can be seen that pink noise also outperforms this approach, and that the
results are very similar to the linear schedule.
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Figure 4.7: The artanh color schedule seems to outperform the linear schedule,
but only very slightly. (MPO, N = 105)



48 CHAPTER 4. TIME-VARYING COLOR

outperformed by either both pink and white noise or by both pink and OU noise.
It looks like on some tasks, scheduling gets the “best of both worlds” from white
noise and red noise, whereas pink noise performs in-between, while on other tasks,
pink noise gets the best of both worlds, and scheduling performs in-between.

It seems that the curriculum learning analogy we put forward is flawed. If we believe
the reason for pink noise’s high performance is indeed a good mix of global and
local exploration, then the comparatively low average performance of the scheduling
approach suggests that it is more beneficial to have both types of exploration at
all points in training, rather than to slowly transition from one to the other. One
way to ensure this is to simply select β randomly for every rollout. Then some
rollouts will explore locally, others will explore globally. The idea behind this is
again that what is needed during training for good performance is a diversity in
exploration (i.e. local and global) and that pink noise, due to being in the “middle
of the exploration spectrum” achieves this approximately, but that increasing the
diversity of exploration strategies (i.e. using more than one β) may be beneficial.
To try this idea out, we first need to select an appropriate distribution to sample
βm from. The simplest choice is to simply select one β from our list B uniformly at
random. Another choice would be to sample β such that the sampled “log-speed”
or tanh β is uniform. To do this, we simply sample a number uniformly from the
open interval (0, 1):

z ∼ U(0, 1), (4.9)

and then transform it such that z = tanh β:

β = artanh z. (4.10)

One new thing we can try with random sampling is to let different actuators use
different exploration processes in the same rollout. We can achieve this simply by
sampling a value for β independently for each action dimension. This is sensible
if our goal is (as stated above) to increase the diversity of exploration strategies.
So far, we have always used the same β for every action dimension. But this was
only because it was unclear how to choose β individually for each dimension. If we
select β by sampling, it becomes very easy to do this, and it definitely increases
the diversity of exploration!

More concretely, why should this kind of exploration be helpful? Imagine that
the environment we want to solve consists of a two-dimensional surface, where
the agent starts at the origin and is empowered to move around freely using two
actions: horizontal and vertical velocity. The goal of the task (which is encoded in
a sparse reward signal) is to reach a certain “finish region” which happens to be
placed on the x-axis, i.e. it is only necessary to move horizontally. In this case, a
large exploration speed (i.e. large β) is required along the x-axis, such that it is
possible to reach the goal accidentally. On the other hand, if the goal region is not
extended vertically, it will be beneficial to have a small β for the y-velocity. This
might seem like a contrived example, but in a given environment it might well be
the case that it is important to vary one action dimension more than another, and
then this kind of “independent β sampling” might be beneficial.
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The independent sampling can be applied to both the list and the artanh sampling
strategies, so we simply test both methods with and without independent sampling.
The resulting average performances are shown in Figure 4.8. Again, we see that
pink noise remains the top performing option. The random sampling methods
perform very similarly to the schedule. Independently sampling β for each action
dimension does not seem to have any impact on the performance. These results
seem to indicate that pink noise performs well for different reasons than just “a
good mix of local and global exploration”, but as these terms are not defined
precisely, this is a bit unclear. We will come back to discussing the reason for pink
noise’s good performance in Chapter 5.

Pink tanhβ
∼ U(0, 1)

tanhβi
∼ U(0, 1)

β ∼ UB βi ∼ UB artanh
schedule
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Figure 4.8: All four random β selection methods perform very similarly, and
are clearly outperformed by pink noise. Sampling each action dimension’s βi

independently, vs. using the same β for all action dimensions, seems to not
make any difference. (MPO, N = 105)

There are, of course, many other methods we could try to vary β over time, but
as those that we did try out performed basically identically, and as there is no
obvious method to try out next, we will stop here. Indeed, if we were to continue
to search for a list β = (β1, β2, . . . , βM) without changing the set of environments
E , observed improvements will increasingly get less meaningful, as we overfit the
colors β to the environments at hand. In the next section we will instead try to
adapt βm to the environment, based on the interactions from all preceding rollouts
(1, 2, . . . ,m− 1).

4.2 Adaptive Methods
We have discovered in Section 3.1 that pink action noise improves performance
across many environments without any need for adaptation. Indeed, in the following
section we saw that adaptation of a constant β to an environment does not lead to
any noticeable increase in performance, even when using an oracle to choose β. In
the last section we then found out that we are also not able to improve performance
much by letting β vary over the course of training, e.g. by using a schedule. So why
should combining these two approaches (adapting to an environment and varying
β with time) that honestly didn’t work very well be a good idea?
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The first thing to restate is that the conclusion at the end of Section 3.2 about the
ineffectiveness of adapting β applies only to constant values of β. It is of course
possible that there really is no better colored noise strategy than “constant pink”.
On the other hand, we have seen in Section 3.2 that the best choice for a constant
β depends heavily on the random seed. If this is true for a constant value of β
then it is probably even more true for a time-varying β. In other words, if the
distribution

p(β? | E) = P
[
β? = argmax

β
perf(E, β)

]
(4.11)

is spread out, why should we expect that the distribution

p(β?
m | E) (4.12)

of the best beta for rollout m is any less so? The randomness in these cases
comes not only from the transition dynamics of the environment, but also from
the stochasticity of the policy and its action noise, as well as potential randomness
in choosing (β1, β2 . . . , βm−1). It seems like it should be much more definite what
the best constant β for an environment is (e.g. “Walker prefers β = 0”), than
what the best βm in rollout m is, given only the environment (Which β42 does the
Cheetah environment prefer in its 42nd rollout?). Choosing the sequence β ahead
of time is similar to open-loop control, only that there is no model of how the RL
algorithm reacts to a sequence choice. Abstractly, the RL algorithm can be seen
as a black box, taking in a list of colors β (and a random seed s) and producing
a performance perf(E,β, s). So far, we have chosen β heuristically, but we might
get much better results by “closing the feedback loop” and selecting βm using all
the information contained in the previous rollouts τ1, τ2, . . . , τm−1, as well as the
previous color choices β1:m−1.

How do we do this? We want some function f that takes in previous trajectories
τ1:m−1 and colors β1:m−1 and spits out the next color βm. This situation is shown
in Figure 4.9. There is no clear way to design such a function heuristically. If we
can’t design a function, maybe we can learn it using machine learning! Supervised
learning is unfortunately out of the question, as there is no expert data of well
selected colors βm from the available data τ1:m−1, β1:m−1. However, reinforcement
learning certainly does apply here. This problem can be described by a Markov
decision process3 with episode lengths of M . The action space is A′ = B, where B
does not have to be the same set of colors we considered before, but can also be

τ1:m−1

β1:m−1

f βm
MDP
π

τm f . . .

Figure 4.9: How can past trajectories τ1:m−1 and color choices β1:m−1 be
transformed into a new color choice βm?

3As we don’t consider the random seed s as observed, we are technically in a contextual MDP
(Hallak et al. 2015), but we ignore this technicality.
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continuous. The state space is

S ′ = {(τ1:m−1, β1:m−1) | m ∈ {1, . . . ,M}, βn ∈ B, τn ∈ T , ∀n ∈ {1, . . . ,m− 1}}
(4.13)

with

T = {(s0, a0, r1, s1, . . . , rT , sT ) | st ∈ S, at ∈ A, rt ∈ R, ∀t ∈ {0, . . . , T}}, (4.14)

where S and A are the state and action space of the original (environment) MDP,
respectively. The reward signal is

ρm =

{
0 if m < M

perf(E, β1:M , s) otherwise
(4.15)

If we can solve this RL problem, then f is the resulting policy. However, it turns
out that this RL problem way too hard to solve. There are several reasons for
this:

• The state-space is enormous. Thus, many rollouts would be required to make
progress on this task.

• The reward is sparse. This makes the credit assignment problem more difficult
and again, more rollouts are required.

• A rollout corresponds to one complete training of an agent on the given
environment. As we want to train only once, this means that the policy
must be done training before the first rollout has finished, which is especially
impossible because the first sparse reward signal comes only at the end of
training. Even if we allowed multiple trainings, it would never be enough to
satisfy the first two points.

These contradictory requirements make the RL problem of course completely
intractable.

We are forced to simplify the problem. One way to do this is to get rid of the
state space entirely. This is the bandit situation we encountered in Section 2.2: at
the beginning of each rollout we select β according to belief distributions over the
expected reward we would obtain with each color choice and a bandit strategy such
as Thompson sampling or UCB. For this, we also have to modify the reward signal,
such that learning becomes possible before the end of training when the sparse
performance-reward arrives. A natural choice here is to design a reward function
which calculates a score for one single rollout (in the environment) to measure
the quality of exploration. After each rollout, the belief distributions can then be
updated using this score and the process repeats. The hope is that designing this
score function is easier than designing the function f itself, but it is not obvious
how to infer good exploration from a trajectory.

Perhaps the simplest choice for a score function is to simply take the episode
return:

Sret(τ) =
T∑
t=1

rt, (4.16)
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where τ = (s0, a0, r1, s1, . . . , sT , rT ) is taken to be the latest trajectory, i.e. that
whose exploration quality is to be judged. This has the advantage that we would
directly optimize the quantity we care about most: performance. It is also easy
to see how such a measure can perform well in sparse reward settings: here, the
objective of exploration is to “reach the goal”. Thus, the best exploration strategy
is the one which gets the agent to the goal, which will also yield the highest return.
However, in many settings, exploration is inherently costly. If an okay policy has
been found, deviating from it might result in lower return, even if this would
improve the policy in the long run. This is the exploration-exploitation trade off
that we discussed in Section 2.2.

A good exploration strategy should lead the agent into states where the policy or
Q-function has high uncertainty. Using something like “average uncertainty” of the
actor or critic on states visited in the trajectory as a score might indeed be a very
good choice. However, as we want this method to be compatible with standard
(non-Bayesian) deep RL methods, we cannot easily estimate uncertainty. What we
can do though, is compare the rollout to previous trajectories. If the rollout is very
similar to a previous one (according to an appropriate measure of similarity), then
the information gained from this rollout is probably minimal, which means that
the exploration was not very good. This is connected to the idea of uncertainty
because, even though we don’t have a quantitative measure of uncertainty, visiting
the same states multiple times should decrease uncertainty in the critic and actor on
these states. To use this idea, we have to propose a method of measuring similarity
between trajectories, as well as a way to turn this similarity into a score.

There are many ways in which the similarity, or equivalently dissimilarity, between
two rollouts can be measured. One might, for example, measure the average
distance ‖st − s′t‖ between visited states in two rollouts τ and τ ′. However, two
rollouts can be effectively the same even if the visited states look very different.
To account for this, one might instead use something like the average difference
between Q-values |Q(st)−Q(s′t)|. We choose instead to use a much simpler metric,
the difference in rollout return |G−G′|, where G =

∑T
t=1 rt. Thus, two trajectories

are considered to be “similar”, if they achieve a similar total reward. The reasoning
here is that if an agent always collects the same return, then these trajectories
are probably achieving this in the same way, meaning that the agent is not acting
very differently. If however, the agent receives a return that is different from those
seen before, then no matter if this new return is higher or lower than the previous
returns, the exploration behavior definitely found something new. This situation is
the one we want to reward.

The way we turn this idea into a score function, is by first constructing a distribution
over previously observed returns, and then looking at the likelihood of observing
the new return G under this distribution. If the likelihood is high, then the new
return is similar to the previous ones, and the episode score is low. If the likelihood
is low, then this episode is not similar to previous ones, as the return is different.
Thus, a different behavior has been found, and this situation is rewarded with a
high score. Of course, it could be that the new behavior is not due to exploration,
but because the policy was just updated; we do not account for this.
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More concretely, we approximate the distribution of past returns using kernel
density estimation. We choose a Gaussian density kernel which can be thought of
as using a dissimilarity measure of (G−G′)2. Given a set {Gi}Ni=1 of past rollout
returns, the fitted distribution then has the form

p(G) =
1

N

N∑
i=1

N (G | Gi, h
2). (4.17)

As the bandwidth parameter we use h = σ̂( 4
3N

)
1
5 with σ̂ = 1.4826 MAD as a robust

estimate for the standard deviation, where MAD is the mean absolute deviation of
{Gi}Ni=1. This is a common choice for h (Murphy 2022, Sec. 16.3.3). Finally, the
score can be calculated as the (continuous) Shannon information of the observed
return G =

∑T
t=1 rt under this distribution:

Sinfo(τ) = − log p(G). (4.18)

This “info-score” has exactly the property listed above, namely rewarding only
those rollouts that achieve an unlikely (novel) return.

Equipped with a method of scoring rollouts, we can now use a bandit algorithm to
select and optimize β. We start with the finite multi-armed bandit setting that we
already discussed in Section 2.2. The first thing we have to do is to select a list of
colors (“bandit arms”) to search over: B = (β1, β2, . . . , βK) with βk ∈ [0, 2], ∀k. In
our experiments we choose the same list B that we used in the previous sections. To
be able to make use of a standard bandit algorithm, such as the Thompson sampling
algorithm we introduced in Section 2.2, we start with a rather strong assumption,
namely that the bandit rewards (= rollout scores) are distributed according to
K Gaussian distributions with known common standard deviation σ. Under this
assumption, we can use exact Bayesian inference to estimate the means (µ ∈ RK)
of the reward distributions (see Eq. 2.22). In Algorithm 1, we show how Thompson
sampling can be applied in this setting to tackle the β-optimization problem (SK

+

denotes the set of positive semi-definite K×K matrices). The relationships between
the random variables are shown in the Bayesian network in Figure 4.10a.

Algorithm 1: Thompson sampling
Input: Arms B = (β1, . . . , βK),

Reward distributions std σ
Initialize m ∈ RK ,Σ ∈ SK

+

for i ∈ N do
Sample q ∼ N (m,Σ)
αi ← argmaxk∈{1,...,K} qk
τi ← Run rollout with βαi

ρi ← score of rollout τi
Do Bayesian update of m,Σ
using {αj, ρj}ij=1, σ (Eq. 2.22)

end

There is a second strong assumption in
the Thompson sampling algorithm (and
similarly for other algorithms like UCB):
it assumes that the reward distributions
are stationary, i.e. that they don’t change
over time. This is not the case in the con-
text of reinforcement learning! Assume,
for example, that the rollout scores are
defined as their return, i.e. ρm = Sret(τm).
Then, if the reinforcement learning algo-
rithm works, it should naturally be the
case that the policy improves over time,
and thus, on average, ρm > ρn for m� n.
This setting of non-stationary bandit distributions can be addressed by using a
sliding-window approach (e.g. Garivier and Moulines 2008): instead of updating the
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Figure 4.10: (a) A Bayesian bandit with Gaussian reward distributions. The
rewards from arm k are sampled from N (µk, σ). Thompson sampling (Alg. 1)
can infer µ while trading off exploration and exploitation. (b) By introducing
the constants b and c, the algorithm can be made scale invariant by performing
Thompson sampling with respect to the normalized reward ρ̃i = (ρi − b)/c.

belief parameters m and Σ with respect to the whole history of observations, only
keep a window of the last N rollouts, in which we assume that the distributions
are approximately stationary.

There remains one other problem: how do we choose the prior parameters m and
Σ and the variance σ2 of the reward distributions? For Σ, the easiest solution is to
assume independent arms, i.e. make Σ diagonal. This is not necessarily the most
efficient solution, as one can imagine that two similar β values will also perform
similarly in their rollouts. We will explore a different approach taking this into
account later in this section. For m, the non-stationarity becomes a problem: again
assuming we use the rollout return as a score, these scores will probably be much
lower at the beginning of training than at the end. Additionally, we might not even
know the scale of returns in a task. To account for this, it would be necessary to
make the prior variances Σkk very large (uninformed). Similarly, σ needs to be
large, to account for the unknown scale of the bandit reward spread. However, this
would mean that many more samples (rollouts) are necessary to tighten the belief
distributions. This is a problem, especially because we only have a small set of N
rollouts when using the sliding-window method.

The ideal would be a bandit method which is invariant with respect to affine
transformations of the rewards, in the sense that it would make no difference if all
rewards ρ were transformed to be bρ+ c for some constants b > 0 and c ∈ R for all
arms. In Figure 4.10b, this situation is shown in a Bayesian network. Here, the
generative process is almost the same as before (see Fig. 4.10a), except that the
reward ρ̃i is scaled and translated by ρi = bρ̃i + c before observation. If, as shown,
the constants b and c are independent of the chosen arm and stay constant within
the window, it is possible to optimize them via maximum marginal likelihood, given
the window of past observations of ρi.

The bandit inference task is to infer the distributional means µ = (µ1, . . . , µk) from
the actions (color indices) α = (αi)

N
i=1 and rewards (rollout scores) ρ = (ρi)

N
i=1. We

set the prior means of the belief distributions to 0 (m = 0), because we want the
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normalized reward distributions to be centered around 0. For now, don’t fix Σ, but
let it be any positive semi-definite K ×K matrix. The generative model for ρ is
defined via the following prior and likelihood function:

p(µ | Σ) = N (µ | 0,Σ) (4.19)

p(ρ | µ,α, b, c, σ) =
∏
i

N (ρi | bµαi
+ c, (bσ)2) (4.20)

These lead us to the following evidence (marginal likelihood) function:

p(ρ | a, b, c, σ,Σ) =
∏
i

p(ρi | αi, b, c, σ,Σ) (4.21)

=
∏
i

∫
p(ρi | µ, αi, b, c, σ) p(µ | Σ) dµ (4.22)

=
∏
i

∫
N (ρi | be>αi

µ+ c, (bσ)2)N (µ | 0,Σ) dµ (4.23)

=
∏
i

N (ρi | be>αi
0+ c, (bσ)2 + be>αi

Σbeαi
) (4.24)

=
∏
i

N (ρi | c, b2(σ2 + Σαiαi
)), (4.25)

where we used canonical basis vectors to represent µαi
= e>αi

µ. For maximization,
it is convenient to work with the log-evidence:

log p(ρ | a, b, c, σ,Σ) = log
∏
i

N (ρi | c, b2(σ2 + Σαiαi
)) (4.26)

=
∑
i

−1

2
log
(
2πb2(σ2 + Σαiαi

)
)
− (c− ρi)

2

2b2(σ2 + Σαiαi
)

(4.27)

=: L(b, c) (4.28)

We can now maximize the evidence with respect to b and c by simply setting the
partial derivatives to 0:

∂cL(b, c) ∝
∑
i

(c− ρi) = 0 (4.29)

∂bL(b, c) =
∑
i

−1
b

+
(c− ρi)

2

b3(σ2 + Σαiαi
)
= 0 (4.30)

Solving these equations gives us

c =
1

N

∑
i

ρi (4.31)

b2 =
1

N

∑
i

(c− ρi)
2

σ2 + Σαiαi

. (4.32)

Using these values, we can “reconstruct” the unscaled or “normalized” reward

ρ̃i =
ρi − c

b
(4.33)
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and perform Thompson sampling with respect to ρ̃i. This normalized Thompson
sampling algorithm, including the sliding window modification, is presented in
Algorithm 2.

Algorithm 2: Normalized TS
Input: Arms B = (β1, . . . , βK),

Window size N
Initialize
m← 0 ∈ RK ,Σ ∈ SK

+ , σ ← 1
for l ∈ N do

i← l mod N
M ← min{l, N}
Sample q ∼ N (m,Σ)
αi ← argmaxk∈{1,...,K} qk
τi ← Run rollout with βαi

ρi ← score of rollout τi
c← 1

M

∑M
j=1 ρj

b←
√

1
M

∑M
j=1

(c−ρj)2

σ2+Σαjαj

ρ̃i ← ρi−c
b

Do Bayesian update of m,Σ
using {αj, ρ̃j}Mj=1, σ

end

With this reward normalization, the prior
parameters m (of m = m1) and s (of
Σ = s2I) become redundant. We have
already set m = 0, and we now also set
the prior variances Σkk to 1. This encour-
ages the algorithm to keep the normalized
mean estimates µk approximately N (0, 1)-
distributed. The “likelihood” parameter σ
remains to be tuned, but it is now not neces-
sary to account for the large uncertainty in
the reward scale, as σ is only concerned with
the normalized reward. In our experiments,
we always set σ = 1.

Next, we want to show that this method is
indeed invariant to affine transformations of
the bandit reward.

Proposition 1. The posterior distribution
over µ in the normalized bandit algorithm
(Alg. 2) is identical for the observations ρ =

(ρ1, . . . , ρN) and ρ′ = b′ρ + c′, for all b′ > 0 and c′ ∈ R. In other words, the
algorithm is invariant to a scaling and translation of the rewards.

Proof. In this setting, the observed rewards ρi are normalized to

ρ̃i =
ρi − c(ρ)

b(ρ)
(4.34)

with

c(ρ) =
1

N

N∑
i=1

ρi (4.35)

b(ρ) =

√√√√ 1

N

N∑
i=1

(c(ρ)− ρi)2

σ2 + Σαiαi

. (4.36)

To prove the invariance of the algorithm, we will simply show that this normalized
reward is the same for both sets of observations, i.e. that ρ̃ = ρ̃′. Then, clearly,
the posteriors p(µ | ρ̃) and p(µ | ρ̃′) will also be the same. Expanding ρ̃′, we get:

ρ̃′ =
ρ′ − c(ρ′)

b(ρ′)
(4.37)

=
b′ρ+ c′ − c(b′ρ+ c′)

b(b′ρ+ c′)
(4.38)
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=
b′ρ+ c′ − 1

N

∑N
i=1(b

′ρi + c′)√√√√ 1

N

N∑
i=1

( 1
N

∑N
j=1(b

′ρj + c′)− (b′ρi + c′))2

σ2 + Σαiαi

(4.39)

=
b′ρ+ c′ − b′ 1

N

∑N
i=1 ρi − c′√√√√ 1

N

N∑
i=1

(b′ 1
N

∑N
j=1 ρj + c′ − b′ρi − c′)2

σ2 + Σαiαi

(4.40)

=
b′(ρ− c(ρ))√√√√ 1

N

N∑
i=1

b′2(c(ρ)− ρi)
2

σ2 + Σαiαi

(4.41)

=
ρ− c(ρ)

b(ρ)
(4.42)

= ρ̃ (4.43)

Thus, we can conclude that the reward normalization indeed guarantees invariance
to affine reward transformations in algorithms such as Thompson sampling.

In Section B, we test out this algorithm on a few toy problems.

As mentioned above, it might be advantageous to consider the bandit arms not as
independent, but as correlated: if a rollout with β = 1.5 performs very well, this
suggests that β = 1.51 would probably also perform well. This reasoning can be
integrated into the Thompson sampling algorithm simply by using a different prior
covariance matrix. A simple approach would be to use something like an RBF
kernel:

Σkk′ = kRBF(βk, βk′) = exp

(
−(βk − βk′)

2

2`2

)
(4.44)

This would ensure that the information from every rollout is used to update the
means for each β. How much a rollout with β influences the posteriors for another
β′ depends on the distance |β − β′| and on the chosen length scale `.

We have already discussed in Section 4.1 that β might not be the best metric
of exploration behavior. Instead, we found that the “speed” of a certain color
of noise is more meaningfully described by σ(2β) (or, equivalently, tanh β). We
can incorporate this prior knowledge into the kernel function by transforming the
inputs:

k(β, β′) = kRBF(σ(2β), σ(2β
′)). (4.45)

This “color kernel” is still a valid positive definite kernel, as both inputs are
transformed by the same function (see e.g. Bishop 2006, Eq. 6.19). The color kernel
is visualized in Figure 4.11, where it can be compared to the normal RBF kernel. It
can be seen how the generalization is larger for high β and smaller for low β.

As noted before, some environments are better described as double integrators
than as single integrators, and the speed of a color is then σ(2β) + 1 (see Sec. 4.1).



58 CHAPTER 4. TIME-VARYING COLOR

0 0.5 1 1.5 2
β′

0

0.5

1

1.5

2

β

RBF Kernel

0 0.5 1 1.5 2
β′

Color Kernel

0.0

0.2

0.4

0.6

0.8

1.0

k
(β
,β
′ )

Figure 4.11: Comparison of the RBF kernel (Eq. 4.44, ` = 0.2) and the color
kernel (Eq. 4.45, ` = 0.1).

Should we use a different kernel function k′ for these environments? Luckily, this is
not necessary, as the color kernel is equally valid in these settings:

k′(β, β′) = kRBF(σ(2β) + 1, σ(2β′) + 1) (4.46)
= kRBF(|σ(2β) + 1− (σ(2β′) + 1)|) (4.47)
= kRBF(|σ(2β)− σ(2β)|) (4.48)
= k(β, β′), (4.49)

where we have used that the RBF kernel is stationary and can thus be written as
kRBF(x, x

′) = kRBF(|x− x′|).

Algorithm 3: GP-TS
Input: Domain B = [βa, βb],

Reward distributions std σ
Initialize m : B → R, k : B2 → R p.d.
for i ∈ N do

Sample q ∼ GP(m, k)
βi ← argmaxβ∈B q(β)
τi ← Run rollout with βi

ρi ← score of rollout τi
Do Bayesian update of m, k using
{βj, rj}ij=1, σ

end

We can now use the kernel function to
account for covariance between the ban-
dit arms by encoding this information in
the initialization of Σ. However, using
a kernel also opens up a new possibil-
ity: we can skip the discretization step
and instead directly perform Bayesian
optimization on the complete interval
β ∈ [0, 2]. This can be done using
the Gaussian process Thompson sam-
pling algorithm, which is shown in Algo-
rithm 3. It is very similar to the original
Thompson sampling algorithm (Alg. 1),
and all the changes we discussed, namely using a sliding window, normalizing the
reward for scale-invariance, and the color kernel, can be used in the same way.

Let us now finally try out these methods in the reinforcement learning setting.
We perform a suite of 6 experiments (all of them with the normalized Thompson
sampling method), 3 each with both of the proposed scoring functions Sret (episode
return) and Sinfo (“info-score”):

• Independent arms (Σ = I) with B = {0, 0.1, 0.2, 0.35, 0.5, 0.75, 1, 1.5, 2},
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Figure 4.12: Results of the bandit color selection methods. No method
manages to come close to pink noise’s performance, and they don’t even
outperform the simple random β selection baseline, shown with a dashed line.
(MPO, N = 105)

• Correlated arms (Σij = k(βi, βj)), where k is the color kernel (` = 0.2), and

• Bayesian optimization on the interval B = [0, 2] using the color kernel with
Gaussian process Thompson sampling (GP-TS).

The results of these experiments are shown in Figure 4.12. It can be seen that
the bandit approach does not outperform pink noise, and that all 6 methods
perform virtually identically. Perhaps most importantly, the bandit methods do
not outperform the random color selection from the last section. This shows that
the bandit method does not work as intended, as “random arm selection” should
be an easy baseline to outperform. As we have seen that the bandit algorithms do
work on simple non-stationary tasks (see Sec. B), the reason for this is probably
due to the bandit signals, Sret and Sinfo, not being informative enough as a bandit
reward signal.

Having now tested all approaches outlined in Figure 2.7, it seems that no clever
scheme will outperform constant pink action noise. In the next chapter, we will try
to explain why pink noise seems to perform so well.
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Chapter 5

Elementary Dynamics

Why is pink noise such a good default noise type? We have now seen that this
is the case, but what quality sets it apart from white noise and OU noise to be
well suited to so many environments, even if it is not always the top performing
option? In Section 4.1, we discussed the concepts of local and global exploration,
and hypothesized that the best exploration behavior provides a balance of the
two, such that high reward regions will be found, while trajectories are not too
off-policy.

To analyze how different noise types behave, we will look at a simplified bounded
integrator environment, which can be thought of as a particle moving in a 2-
dimensional box, where the actions provide the velocity vector (ẋ, ẏ). If we control
this particle purely by noise, we can analyze the exploration behavior in isolation of
a policy, similarly to our analysis in Section 2.3. As a first test, we run 20 episodes
of 1000 steps in an environment of size 250× 250 with white noise, pink noise, and
OU noise (all with scale σ = 1, x- and y-velocity controlled independently). The
resulting trajectories are shown in Figure 5.1. It can be seen that white noise does
not reach far enough in this environment, and would not be able to collect a sparse
reward at the edges: it performs only local exploration. On the other hand, OU
noise only explores globally, and gets stuck at the edges. Of the three only pink
noise provides a balance of local and global exploration, and covers the state-space
more uniformly than the other two.

Of course, this is only true for this specific size of the environment. If the environ-
ment were much smaller, then white noise would be enough to cover the space and
the pink noise trajectories would look similar to the OU trajectories here. On the
other hand, if the environment were bigger, then pink noise would not reach the
edges and OU noise would explore better. The best exploration behavior seems to
be the one which covers the state space most uniformly: reaching, but not getting
stuck at, the edges. The uniformity of the state space coverage is measured by the
entropy of the state-visitation distribution induced by the trajectory distribution.
This distribution (and hence the entropy) can be estimated by a histogram density
approximation: partitioning the state-space into a number of boxes (we choose
50×50 = 2500 boxes), sampling many trajectories (we choose 104), and then count-
ing the number of sampled points in each box. If we now vary the environment size
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White noise Pink noise OU noise

Figure 5.1: Trajectories of pure noise agents on the bounded integrator
environment. It can be seen that white action noise (left) only explores locally,
OU noise only explores globally, and only pink noise (center) provides both
local and global exploration.

and compute the entropy for all three noise types, we should expect that for very
small environments, white noise has the highest entropy, and that for very large
environments, OU noise has the highest entropy. For medium-sized environments,
however, we can expect pink noise to have higher entropy, as we saw in Figure 5.1.
We choose the range of environment sizes for this experiment to reflect the complete
sensible range for episode lengths of 1000 steps and noise scales of σ = 1: from
very small (50 × 50) to very large (2000 × 2000). The results of this experiment
are shown on the left in Figure 5.2, and we see exactly what we expected. Pink
noise is not “special” in the sense that it performs best on all environments, as
we already saw in the previous sections. However, it seems to perform best on
“medium scales”, as determined by the episode length, and if we do not know where
on this spectrum a given environment lies, then pink noise is clearly a better default
choice than white noise or OU noise!

The bounded integrator environment, which describes the dynamics of a velocity-
controlled particle moving in a box, can be seen as an abstract description of the
partial dynamics of many real environments. A different part of the dynamics of
many environments is oscillation. Oscillation is the dominant part of the dynamics
of the Pendulum and MountainCar environments1, but is also integral to other
environments, like Ball-In-Cup or CartPole. To model these dynamics, we construct
a second environment: a driven harmonic oscillator. The oscillator environment,
which we make available online as a Gym environment2, models the 1-dimensional
motion of a particle of mass m, attached to the origin by an ideal spring of stiffness
k, damped with friction coefficient b, and driven by a force F . The state space
consists of the mass’s position x and velocity ẋ, and the action describes the force
F that is applied to the mass. The goal is now to drive the oscillator in such a way
that as much energy as possible is delivered to the system. This is a very similar
goal as in the MountainCar and Pendulum tasks, where an action noise with this
property is necessary to collect the sparse reward under an uninformed policy.

1See Section C for a simple method exploiting this property to solve MountainCar.
2https://github.com/onnoeberhard/oscillator-gym

https://github.com/onnoeberhard/oscillator-gym
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Figure 5.2: Pink noise strikes a favorable middle ground between white noise
and Ornstein-Uhlenbeck noise on a wide range of environments. On both a
bounded integrator environment parameterized by its size (left), and on a
simple harmonic oscillator environment parameterized by its resonant frequency
(right), it is much more general in terms of the range of parameters which
yield good results, and performs well on the complete range of reasonable
parameterizations. We argue that this quality is what makes it a good default.

The oscillator environment is parameterized by the resonant frequency f of the
system. How can we set this resonant frequency? The oscillator’s motion is
described by the ordinary differential equation

mẍ = F − bẋ− kx, (5.1)

where x is the particle’s position. In our experiments we set the friction coefficient
b to zero, i.e. the system is undamped. This setup is then called a simple har-
monic oscillator. The energy of the oscillator is the sum of kinetic and potential
energy:

E =
1

2
mẋ2 +

1

2
kx2. (5.2)

The resonant frequency is:

f =
1

2π

√
k

m
. (5.3)

As we want to configure the oscillator to have a given resonant frequency f , we
need to set m and k accordingly. To get a unique solution, we impose a second
constraint: the energy at x = 1 and ẋ = 0 should be E = 2π2. If we now solve the
two equations (5.2) and (5.3) for m and k, imposing the constraint on E, we get
the solution

k = 4π2 (5.4)

m =
1

f 2
(5.5)

to set the resonant frequency. In Figure 5.3, a few pure-noise trajectories (akin to
Fig. 5.1) are shown on the oscillator environment.

Figure 5.2 shows the average energy in the oscillator system (over episodes of 1000
steps) as a function of the resonant frequency f , which we vary from very low
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(f = 1
1000

, episode length = 1 period) to very high (f = 1
2
, Nyquist frequency),

when driven by white noise, pink noise, and OU noise. The energy is measured
relative to the average energy achieved by optimal actions (sinusoidal excitation at
the resonant frequency), denoted harmf . Even though this is a completely different
setup to the bounded integrator, and we are measuring a completely different
quantity, the two plots look remarkably similar. Again, this shows the power of
pink noise as a default action noise: if we do not know the resonant frequency of
the given environment, pink noise is the best choice.
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Figure 5.3: Trajectories on the oscillator environment. For each of the 3
resonance frequencies f ∈ {0.002, 0.02, 0.2}, we sample 5 action noise signals
of length 10

f
of white noise, pink noise and OU noise. We can see that pink

noise is much less sensitive to the parameterization than white noise and OU
noise, and always manages to excite the oscillator up to a certain amplitude.
White noise and OU noise only work well in the high- and low-frequency regime,
respectively.
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These two environments (bounded integrator and oscillator) are rather simplistic.
However, the dynamics of many real systems undoubtedly contain parts which
resemble oscillations (when a spring or pendulum is present), single or double
integration (when velocities/steps or forces/torques are translated into positions) or
contact dynamics (such as the box in the bounded integrator). If an environment’s
dynamics are very complex, i.e. they contain many such individual parts, then the
ideal action noise should score highly on each of these “sub-tasks”. However, if
all these individual parts have different parameters (like the environment size or
resonant frequency above), it stands to reason that the best single action noise
would be the one which is general enough to play well with all parameterizations,
i.e. pink noise. On the flip side, the average performance in Figure 3.3 over all
environments may be interpreted as the performance over a very complicated
environment, with the sub-tasks being the “actual” environments. This might
explain why we see this curve: all sub-tasks have very different parameters, and
require different action noises (as we see in Fig. 3.4), but pink noise is general
enough to work well on all sub-tasks, and thus easily outperforms noise types like
white noise or OU noise, which are only good on very specific environments (see
Fig. 5.2). These ideas are related to our discussion at the end of Section 3.1, where
we hypothesized that pink noise might also be the best noise on certain individual
environments (those of “third type”), because these environments are complex
enough that they require an action noise, such as pink noise, which performs well
on all different sub-tasks.
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Chapter 6

Conclusion

In this work we performed a comprehensive experimental evaluation of colored
noise as action noise in deep reinforcement learning for continuous control. We
compared a variety of colored noises with the standard choices of white noise
and Ornstein-Uhlenbeck noise, and found that pink noise outperformed all other
noise types when averaged across a selection of standard benchmarks. Pink noise
performs equally well to an oracle selection of the noise type, and is also not
outperformed by more sophisticated methods that change the noise type over the
course of training: color-schedules, bandit methods, and random selection schemes.
As no method outperforms pink noise, our recommendation is to use pink noise as
the default action noise. Finally, we studied the behaviors of pure noise agents on
two simplified environments: a bounded integrator and a harmonic oscillator. The
results showed that pink noise is much more general with respect to the environment
parameterization than white noise and OU noise, which sheds some light on why it
performs so well as the default choice.
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Appendix A

SAC and TD3 results

In addition to the experiments on MPO discussed in the main text, we also
performed all experiments on SAC and TD3. MPO and SAC parameterize a
stochastic policy, meaning they learn the action noise scale as a function σ(s) of
the state. TD3, on the other hand, uses a deterministic policy, and the action
noise is added independently of the state. Usually, the noise scale σ is kept fixed
over the course of training, and this how we handle it in our experiments as well.
However, σ is an important hyperparameter, and there is no single value that works
well on all environments. Thus, we repeat our TD3 experiments with the values
σ ∈ {0.05, 0.1, 0.3, 0.5, 1}, and 10 different random seeds. For SAC, we use 20 seeds,
just as with MPO.

In Figure A.1, the results of the SAC and TD3 experiments with constant noise
type are shown in the form of bootstrap distributions for the expected average
performance (see Sec. 3.1), and compared to the same experiments on MPO, as well
as to a combination of all results, where the influence of the algorithm has been
normalized out. As there is an additional hyperparameter (σ), we first average
the TD3 performance over all σ values, before computing the average performance
across tasks. The beneficial effect of pink noise can be clearly seen on TD3 and
SAC as well. Incidentally, this figure also confirms Fujimoto et al. (2018)’s results
that, on TD3, white noise and OU noise perform similarly. In Figure A.2, we
show the learning curves on TD3 and SAC (the MPO learning curves are shown in
Fig. 3.5).
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pink action noise as measured by the average performance over the environments
of Figure 3.1.
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Appendix B

Normalized Thompson sampling

In Figure B.1, six non-stationary bandit problems are shown. Each bandit has
four arms (represented by four primary colors), and the reward distributions are
all Gaussian, though they change over time (i.e. they are non-stationary). These
distributions are supposed to represent (non-realistically), how the rollout scores
might change over time, depending on which arm (β) is selected. The biggest
challenge with this setup is not necessarily that these problems are non-stationary.
As explained in Section 4.2, this can be addressed by using a sliding window
approach. Instead, the biggest challenge is that we do not normally know the
scale of the rewards. As can be seen in the figure, these scales vary by a large
amount from distribution to distribution, as can also be the case with reinforcement
learning environments. Thus, without the reward normalization of Algorithm 2, we
will have to carefully select a likelihood noise scale σ, as well as the prior mean m
(where m = m1) and standard deviation s (where Σ = s2I). This is not easy, as
all distributions are very different. We choose the parameters σ = 500, m = 1000
and s = 1000. These might not be the very best choices, but as one normally does
not even have a nice picture like this to decide these hyperparameters, we think
these are as good as one might choose. The “trainings” last for 10,000 steps, and
we set the sliding window size to 1000.

In Figure B.2, the results of this (unnormalized) approach are shown. For each of
the six problems, two plots are created. The first one shows a scatter plot of the
history: At every time step, a dot indicates the received reward and, by its color,
the arm that was chosen. Below the scatter plots, a colored horizontal line indicates
for every time step, which arm (color) is the best one, in terms of the mean of the
reward distribution. Thus, if the scatter plots have the same color as the horizontal
line below, the bandit algorithm is selecting the best arms. The second plot for
every bandit problem shows the mean estimates. Here, for each of the four arms a,
the current value of the posterior mean estimate ma is plotted. Below these lines,
there are two horizontal lines. The lower one is the same as in the history plots,
indicating which arm has the highest actual mean. The upper one shows which arm
has the highest estimated mean. Thus, if both lines are colored identically, this is a
good sign. The title of the history plot also reveals the total regret R at the end
of training, as defined by Eq. (2.18), as well as the “optimality ratio”: how many
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Figure B.1: A few non-stationary bandit toy problems

of the bandit algorithm’s choices were optimal, in the sense that, at that point in
time, the chosen arm was the best one. Keep in mind that randomly selecting an
arm at every interaction will yield an optimality of 1

4
= 25%.

The results of the normalized Thompson sampling algorithm (Alg. 2) are shown in
Figure B.3 (here, the default hyperparameters of m = 0, s = σ = 1 were used). It
can be seen that the unnormalized approach performs very poorly when compared
to the normalized method, which outperforms the unnormalized method on each of
the six toy problems.
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Figure B.2: Results of the unnormalized Thompson sampling method (see
text for details). It can be seen that on some problems, the algorithm is too
certain and chooses the wrong arm with confidence (C, D, F), while on other
problems, it is not confident enough and explores too much (B, E).
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Figure B.3: Results of the normalized Thompson sampling method (see text
for details). The invariance to the reward scale (guaranteed by Prop. 1) makes
this method outperform the unnormalized version on every one of these toy
problems.



Appendix C

Solving MountainCar by FFT

MountainCar is a very simple environment. Although its dynamics are almost those
of a harmonic oscillator, there is a difference to the oscillator environment from
Chapter 5: MountainCar’s oscillation dynamics are non-linear. At the bottom of
MountainCar’s valley (see Fig. 1.1), the small-angle approximation of a non-linear
oscillator may be used, but for the motion to go up to the top, the behavior
is different from simple harmonic motion. Nevertheless, we can use this insight
to develop a very simple open-loop control algorithm to solve this environment,
by running one rollout without applying any action (just letting the mountain
make the car go back and forth a bit), then analyzing the resulting trajectory and
inferring the hill’s (small-angle) resonant frequency (via the Fast Fourier Transform
algorithm). Finally, we can control the car by simply swinging it back and forth
at the resonant frequency. This algorithm, which works very well on this task,
is shown on the next page, and the trajectory resulting from the rollout without
applying any force is shown in Figure C.1.
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Figure C.1: Trajectory (x-coordinate) resulting from running one full episode
(1000 steps) on MountainCar without applying any force (at = 0,∀t).
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1 import gym
2 import numpy as np
3 from scipy.fft import rfft
4

5 # Initialize environment
6 env = gym.make('MountainCarContinuous-v0')
7 T = env._max_episode_steps
8

9 # Run a single rollout with no force. Save x-coordinate to `x`.
10 obs = env.reset()
11 x = [obs[0]]
12 for t in range(T):
13 obs, *_ = env.step([0])
14 x.append(obs[0])
15

16 # Find resonant frequency = highest peak of FFT (excluding DC)
17 f = (np.argmax(abs(rfft(x))[1:]) + 1) / (T + 1)
18

19 # Action plan (harmonic excitation)
20 a = np.sin(2*np.pi*f * np.arange(T))
21

22 # Test on 1000 rollouts
23 N = 1000
24 solved = 0
25 for i in range(N):
26 env.reset()
27 for t in range(T):
28 _, r, _, _ = env.step([a[t]])
29 if r > 0:
30 solved += 1
31 break
32

33 print(f"Solved: {solved/N * 100:.0f}%.") # prints "Solved: 100%."
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