Pink Noise is All You Need

Colored Noise Exploration in Deep Reinforcement Learning

Onno Eberhard · Jakob Hollenstein · Cristina Pinneri · Georg Martius

onnoeberhard@gmail.com

University of Tübingen

Max Planck Institute for Intelligent Systems

October 12, 2022

Introduction

- ► Setting: Reinforcement learning for continuous control
- ► Example: MountainCar problem

Exploration

- ► Why is exploration necessary for this problem?
- For an untrained policy, $r(s, a) \approx -0.1a^2$
- ► The agent will learn to apply no force!

Exploration

- \blacktriangleright Exploration means **not** performing the action the policy proposes: $a_t \neq \mu(s_t)$
- ► How is exploration usually done in continuous control?
 - ▶ Simply add some noise ε_t to the actions.
- lacktriangle Deterministic policies (e.g. TD3): Fixed noise scale σ

$$a_t = \mu(s_t) + \sigma \varepsilon_t$$

► Stochastic policies (e.g. SAC, MPO): Learn noise scale function

$$a_t = \mu(s_t) + \sigma(s_t) \odot \varepsilon_t$$

lacktriangle Usually, $arepsilon_t \sim \mathcal{N}(0,I)$ is sampled independently at every time step

4

White Noise

- ▶ If $\varepsilon_t \sim \mathcal{N}(0, I)$ independently at every time step, then $\varepsilon_{1:T}$ is called **white noise** ▶ Why?
- ▶ The **power spectral density** (PSD) is defined for any signal $\varepsilon(t)$ as

$$|\hat{\varepsilon}(f)|^2$$
 where $\hat{\varepsilon}(f) = \mathcal{F}[\varepsilon(t)](f)$

White Noise

- ► How well does white noise exploration work on MountainCar?
 - ► Demonstration!
 - ▶ ⊗
 - ► Why so bad?
- ► Let's look at an even simpler environment: an integrator

$$s_t = \sum_{\tau=1}^t a_\tau$$

▶ How far does white noise reach $(a_{\tau} \sim \mathcal{N}(0,1))$?

$$s_t \sim \mathcal{N}(0, t) \quad \leadsto \quad \mathbb{E}[|s_t|] \propto \sqrt{t}$$

 \blacktriangleright White noise is slow, because it is temporally uncorrelated ($cov[\varepsilon_t, \varepsilon_{t'}] = 0$).

Ornstein-Uhlenbeck Noise

- ▶ Simple fix: Just use a temporally correlated noise process ($cov[\varepsilon_t, \varepsilon_{t'}] > 0$).
- **Brownian motion** (s_t from the previous slide) is temporally correlated
 - $ightharpoonup z_t = \int_0^t s_\tau \, \mathrm{d}\tau \quad \leadsto \quad \mathbb{E}[|z_t|] \propto t^{3/2}$
 - Not stationary (variance increases without bounds)
 - ► Unsuitable as action noise
- ► This can be fixed with **Ornstein-Uhlenbeck** (OU) noise:

$$\dot{\varepsilon}_t = -\theta \varepsilon_t + \sigma \eta_t$$
 where $\eta_t \sim \mathcal{N}(0, 1)$

- Equivalent to Brownian motion if $\theta = 0$, stationary if $\theta > 0$
- ▶ How does it perform on MountainCar ($a_{1:T} \sim \text{OU}_T$, $\theta = 0.15$)?
 - ► Better!
 - OU noise is the default action noise on DDPG.

Experiments

- ► How do white and OU action noise perform on other environments?
- ▶ We perform experiments on a number of benchmark tasks using MPO and SAC.

- ► Performance = mean evaluation return over training.
- ► We report the "average performance" as the normalized performance averaged over all environments

Results

Intermediate Temporal Correlation

- ► Uncorrelated action noise (white noise) fails at hard exploration tasks
- ► Strongly correlated noise (OU noise) yields bad results due to off-policy data
- ► Action noise with **intermediate temporal correlation** might be more general

▶ Idea: Change the exponent of $f^{-\beta}$ to be $0 < \beta < 2$

Colored Noise

- ▶ Noise with a PSD proportional to $f^{-\beta}$ is called **colored noise** with color β
- ▶ White noise is colored noise with $\beta = 0$
- ▶ Brownian motion is colored noise with $\beta = 2$ (also called red noise)
- ▶ Stationary colored noise signals can be efficiently generated ($\varepsilon_{1:T} \sim \text{CN}_T(\beta)$)

Colored Action Noise: Results

Pink Noise

- ► The results show that intermediate temporal correlation is a better default
- ▶ In particular, **pink noise** (CN with $\beta = 1$) performs best across tasks
 - ▶ We have also experimented with β -schedules, choosing β randomly for each rollout, and using a bandit algorithm to optimize β online.
 - ► Pink noise performed better than all other methods

Why does pink noise work so well as a default?

- ► "Faster" than white noise, but more on-policy than OU noise
 - ▶ Works both on tasks that prefer white noise, and on those that prefer OU noise
- ► Many environments actually prefer pink noise over both white and OU noise!
 - Not just the "best compromise"
 - ► Why?

A Bounded Integrator

► Let us look at a simple 2-dimensional bounded integrator environment:

$$s_{t+1} = \operatorname{clip}(s_t + a_t, -c, c)$$

▶ Parameterized by its size (area = $4c^2$)

A Bounded Integrator

- ► Exploration and state space coverage can be measured by the entropy
- ▶ We divide the space into B bins, run N trajectories and estimate the state-visitation distribution by a histogram ($B=2500, N=10^4$)
- ► This can be repeated for a large range of environment sizes

A Harmonic Oscillator

- ▶ Let us look at a second simple environment: a harmonic oscillator.
- lacktriangle A mass m is attached to a spring of stiffness k (no friction or gravity)
- ▶ Parameterized by its resonant frequency $f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$
- \blacktriangleright State: position x and velocity \dot{x} , Action: Force applied to mass

A Harmonic Oscillator

- ► This oscillator is related to environments like MountainCar
- ► In these tasks, the exploration noise has to swing up the oscillator
- ▶ This can be measured by the energy in the system: $E = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2$
- lacktriangle We can vary f over the complete sensible range and measure the average energy

The Power of Pink

- ► In two very different settings we see very similar results
- ▶ If we don't know the exact parameterization (e.g. high or low c or f) of a given environment, pink action noise is the safest bet!
- ► This explains the average performance results we saw before
 - lacktriangle Many different tasks with different preferences ightarrow pink noise is most general

Takeaway

► Use **pink noise** as the default action noise.

Q & A

Thanks for listening!