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Eligibility traces are more
effective than sliding windows
as a memory mechanism for

RL in POMDPs.

Motivation & memory
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Memory update:

new memory

t + 1
= λ

old memory

t
+ (1 − λ)

new observation

t + 1

Memory traces during a trajectory (λ = 0.8):
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▶Memory is necessary in many partially observable environments
▶Length-𝑚 window: winm(𝑦t, 𝑦t−1, … ) ≐ (𝑦t, 𝑦t−1, … , 𝑦t−m+1)
▶Memory trace with forgetting factor 𝜆 ∈ [0, 1):

𝑧λ(𝑦t, 𝑦t−1, … ) = 𝜆𝑧λ(𝑦t−1, 𝑦t−2, … ) + (1 − 𝜆)𝑦t

POMDPs & value functions

▶We consider the problem of policy evaluation with offline data
→Environment ℰ is a hidden Markov model, observation space 𝒴 is one-hot

▶Q: How much data do we need to accurately estimate the value function?
▶Goal: given a function class ℱ ⊂ {𝒴∞ → [𝑣, 𝑣]}, find 𝑓 ∈ ℱ that minimizes

ℛℰ(𝑓) ≐ 𝔼ℰ[{𝑓(𝑦0, 𝑦−1, … ) −
∞
∑
t=0

𝛾t𝑟(𝑦t+1)}
2].

▶Length-𝑚 window: ℱm ≐ {𝑓 ∘ winm ∣ 𝑓 ∶ 𝒴m → [𝑣, 𝑣]}
▶Memory traces: ℱλ ≐ {𝑓 ∘ 𝑧λ ∣ 𝑓 ∶ 𝒵λ → [𝑣, 𝑣]}, where 𝒵λ ≐ {𝑧λ(ℎ) ∣ ℎ ∈ 𝒴∞}
▶Learning theory: learning is easier if the metric entropy 𝐻𝜖(ℱ) is small
▶For windows, we have 𝐻𝜖(ℱm) ∈ Θ(|𝒴|m) → long windows are expensive!

The geometry of trace space

Fast forgetting (λ = 0.3) Critical forgetting (λ = 0.5) Slow forgetting (λ = 0.7)
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▶Memory traces with forgetting factor 𝜆 < 1
2 remember everything

→𝑧λ is invertible, and therefore 𝐻𝜖(ℱλ) = ∞
▶Need to “zoom in” to differentiate histories that only differ far in the past
▶The “resolution” of a function class is given by its Lipschitz constant
▶We consider the class ℱλ,L ≐ {𝑓 ∘ 𝑧λ ∣ 𝑓 ∶ 𝒵λ → [𝑣, 𝑣], 𝑓 is 𝐿-Lipschitz}

▶We have 𝐻𝜖(ℱλ,L) ∈ 𝒪(𝐿min{dλ,|𝒴|−1}), where 𝑑λ ≐ log |𝒴|
log(1/λ)

Fast forgetting: 𝜆 < 1/2

Theorem (window → trace)

Windows are not more efficient than memory traces.

Let 𝑚 ∈ ℕ be a window length, 𝜆 < 1
2 a forgetting factor, and define

𝐿(𝑚) =
𝑣 − 𝑣

√2(1 − 2𝜆)𝜆m−1
.

Then, for every 𝜖 > 0 and every environment ℰ,
ℛℰ(ℱλ,L(m)) ≤ ℛℰ(ℱm) and 𝐻𝜖(ℱλ,L(m)) ∈ 𝒪(|𝒴|m) = 𝒪(𝐻𝜖(ℱm)).

Theorem (trace → window)

Memory traces with 𝜆 < 1
2 seem no more efficient than windows.

Let 𝜆 ∈ [0, 1) be a forgetting factor, 𝐿 > 0 a Lipschitz constant, 𝜖 ∈ (0, 𝐿), and define

𝑚(𝜆, 𝐿) = ⌈
log(𝐿/𝜖)
log(1/𝜆)

⌉.

Then, for every environment ℰ,
ℛℰ(ℱm(λ,L)) ≤ ℛℰ(ℱλ,L) + 𝒪(𝜖) and 𝐻𝜖(ℱm(λ,L)) ∈ 𝒪(𝐿dλ ).

If 𝜆 < 1
2, then 𝑑λ < |𝒴| − 1.

▶Learning with windows and memory traces (𝜆 < 1
2) seems equivalent!

Slow forgetting: 𝜆 ≥ 1/2

Theorem (T-maze)

Memory traces (𝜆 ≥ 1
2) can be significantly more efficient than windows.

There exists a sequence (ℰk) of environments (with constant observation space 𝒴)
with the property that, for every 𝜖 > 0,

min
m∈ℕ

{𝐻𝜖(ℱm) ∣ ℛℰk
(ℱm) = 0} ∈ Ω(|𝒴|k), and

min
λ∈[0,1)

min
L≥0

{𝐻𝜖(ℱλ,L) ∣ ℛℰk
(ℱλ,L) = 0} ∈ 𝒪(𝑘|𝒴|−1).

In particular, the T-maze with corridor length 𝑘 is such a sequence. In this case,
the minima are attained at 𝑚k = 𝑘, 𝜆k = k−1

k , and 𝐿k = √2e𝑘.

▶ In the T-maze, most of the |𝒴|k histories are irrelevant
→Can map these to arbitrary values, allows for larger Libschitz constant

▶ In other environments, memory traces can effectively smooth out noise
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Experiments
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▶Memory traces are an effective drop-in replacement for frame stacking
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https://lds.is.mpg.de/
https://onnoeberhard.com/memory-traces

