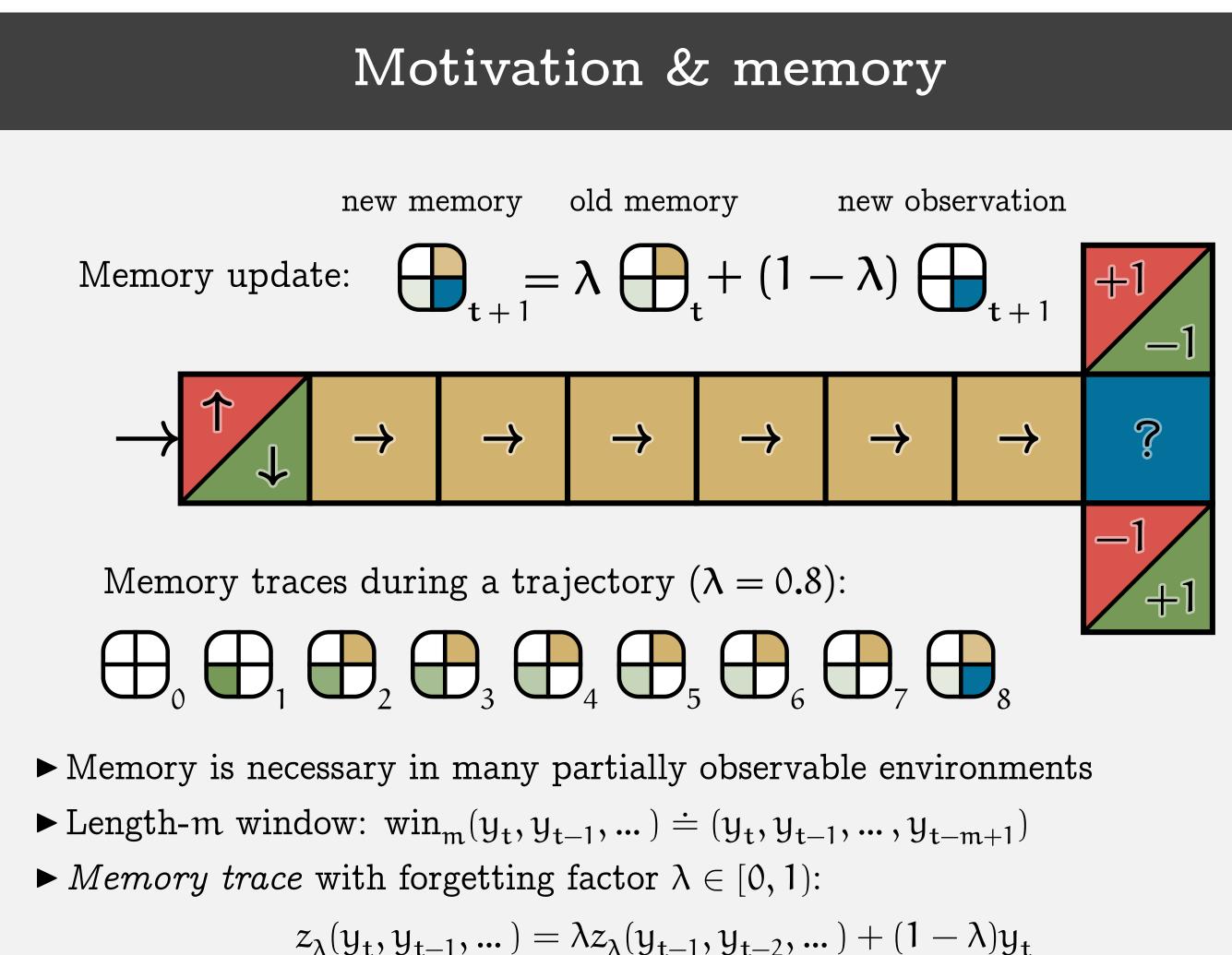
Partially Observable Reinforcement Learning with Memory Traces

Claire Vernade² Michael Muehlebach¹ Onno Eberhard¹² ¹Max Planck Institute for Intelligent Systems ²University of Tübingen

Eligibility traces are more effective than sliding windows as a memory mechanism for RL in POMDPs.



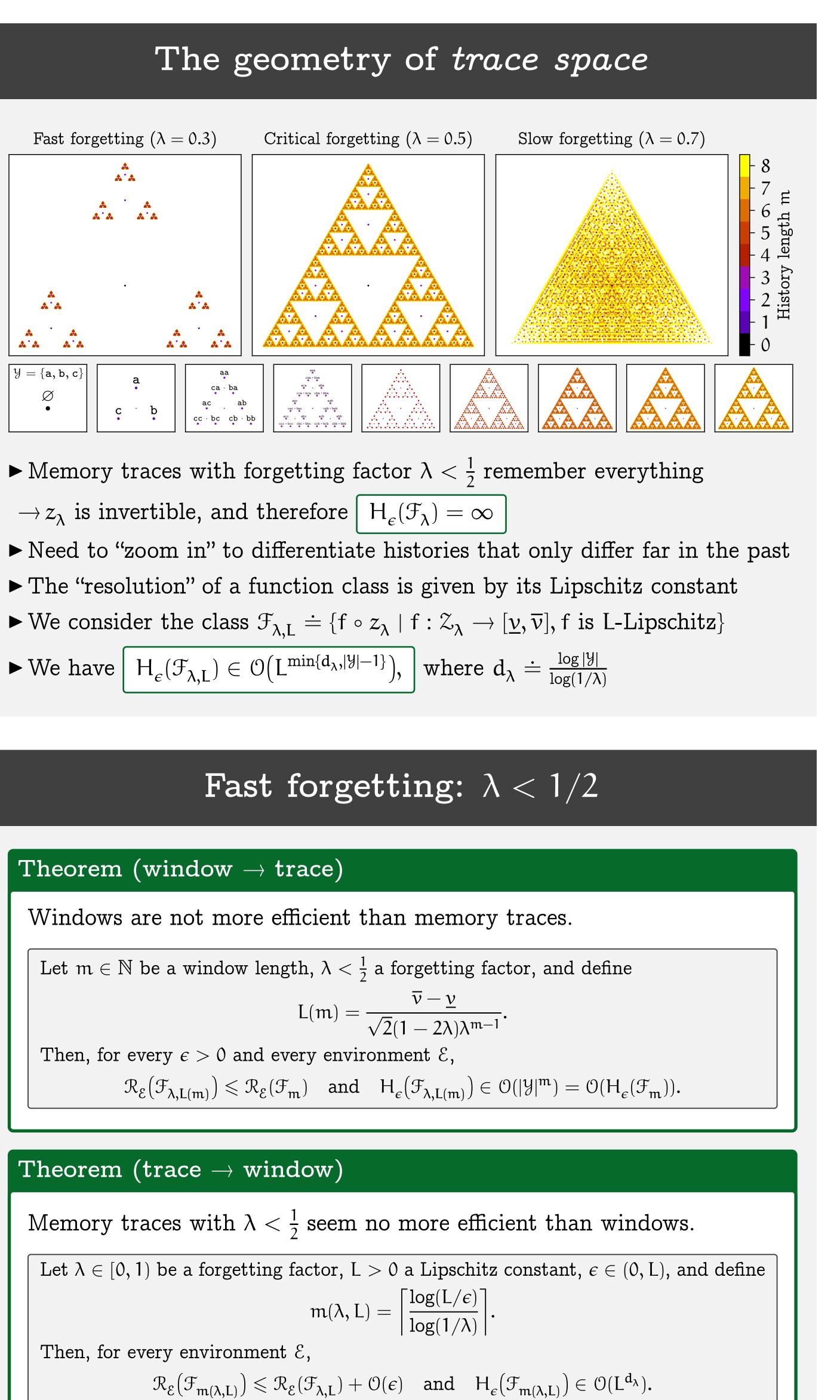
POMDPs & value functions

- ► We consider the problem of *policy evaluation* with offline data \rightarrow Environment \mathcal{E} is a hidden Markov model, observation space \mathcal{Y} is one-hot
- ► Q: How much data do we need to accurately estimate the value function?
- ► Goal: given a function class $\mathcal{F} \subset {\mathcal{Y}^{\infty} \to [\underline{\nu}, \overline{\nu}]}$, find $f \in \mathcal{F}$ that minimizes

$$\mathcal{R}_{\mathcal{E}}(\mathbf{f}) \doteq \mathbb{E}_{\mathcal{E}} \left[\left\{ f(\mathbf{y}_{0}, \mathbf{y}_{-1}, \dots) - \sum_{\mathbf{t}=0}^{\infty} \gamma^{\mathbf{t}} r(\mathbf{y}_{\mathbf{t}+1}) \right\}^{2} \right].$$

- ► Length-m window: $\mathcal{F}_{m} \doteq \{ f \circ win_{m} \mid f : \mathcal{Y}^{m} \rightarrow [\underline{\nu}, \overline{\nu}] \}$
- Memory traces: $\mathcal{F}_{\lambda} \doteq \{ f \circ z_{\lambda} \mid f : \mathcal{Z}_{\lambda} \to [\underline{\nu}, \overline{\nu}] \}$, where $\mathcal{Z}_{\lambda} \doteq \{ z_{\lambda}(h) \mid h \in \mathcal{Y}^{\infty} \}$ ► Learning theory: learning is easier if the metric entropy $H_{\epsilon}(\mathcal{F})$ is small
- ► For windows, we have $| H_{\epsilon}(\mathcal{F}_{\mathfrak{m}}) \in \Theta(|\mathcal{Y}|^{\mathfrak{m}}) | \rightarrow \text{long windows are expensive!}$

Sixth Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM 2025) · Dublin, Ireland



Let $\lambda \in [0, 1)$ be a forgetting factor, $L > 0$ a Lipschitz
$\mathbf{m}(\lambda, \mathbf{L}) = \left\lceil \frac{\log(\mathbf{L}/\epsilon)}{\log(1/\lambda)} \right\rceil.$
Then, for every environment \mathcal{E} ,
$\mathcal{R}_{\mathcal{E}}\big(\mathcal{F}_{\mathfrak{m}(\lambda,L)}\big) \leqslant \mathcal{R}_{\mathcal{E}}(\mathcal{F}_{\lambda,L}) + \mathcal{O}(\epsilon) \text{and} H_{\epsilon}\big(\mathcal{F}_{\lambda,L}(\lambda,L)\big) \leq \mathcal{R}_{\epsilon}(\mathcal{F}_{\lambda,L}(\lambda,L)) + \mathcal{O}(\epsilon) \text{and} H_{\epsilon}(\lambda,L) \leq \mathcal{O}(\epsilon)$
If $\lambda < \frac{1}{2}$, then $d_{\lambda} < \mathcal{Y} - 1$.

► Learning with windows and memory traces $(\lambda < \frac{1}{2})$ seems equivalent!

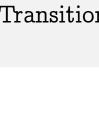
MAX PLANCK INSTITUTE

Slow forgetting: $\lambda \ge 1/2$

Theorem (T-maze)
Memory traces $(\lambda \ge \frac{1}{2})$ can be s
There exists a sequence (\mathcal{E}_k) of envi with the property that, for every $\epsilon >$
$\min_{\mathfrak{m}\in\mathbb{N}} \{ H_{\epsilon}(\mathcal{F}_{\mathfrak{m}})$
$\min_{\lambda \in [0,1)} \min_{L \geqslant 0} \{ H_{\epsilon}(\mathcal{F}_{\lambda,L}) \}$
In particular, the <i>T</i> -maze with correct the minima are attained at $m_k = k$,
► In the T-maze, most of the $ \mathcal{Y} ^k$
ightarrow Can map these to arbitrary va
► In other environments, memory
$p(x_t = 1 h_t = 1110) \qquad \text{Optimal } \lambda \text{ for } I \\ 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 \\ \hline \begin{tabular}{l}{l}{l}{l}{l}{l}{l}{l}{l}{l}{l}{l}{l}$

0.4 0.2

Transition probability p



Sutton's noisy random walk 2 3 4 5 6 7 8 10 20 m 0.12 TD fixed point (memoryless) Best memoryless solution ŭ 0.10 retu 80.0 — TD(0) memory trace b 0.06 TD(0) full window — TD(0) concatenati 0.04 - Optimum memory trace $a + be^{-cm}$ fit • Optimum full window 00.20.4 0.60.7 0.8 0.9

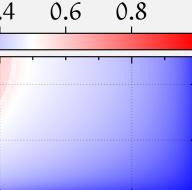
► Memory traces are an effective drop-in replacement for frame stacking

significantly more efficient than windows.

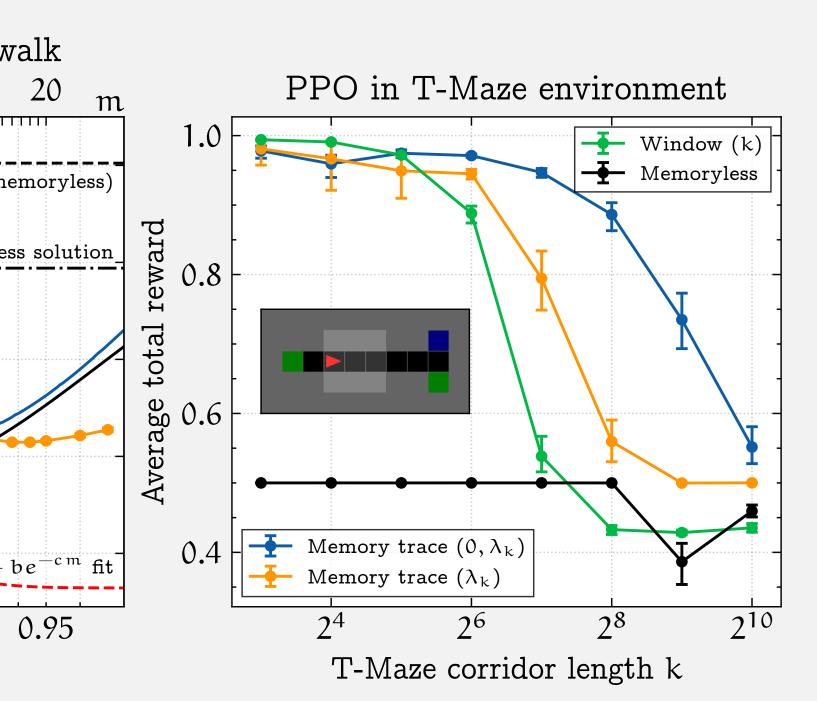
vironments (with constant observation space \mathcal{Y}) > 0, $\mathcal{R}_{\mathcal{E}_{k}}(\mathcal{F}_{\mathfrak{m}}) = 0 \} \in \Omega(|\mathcal{Y}|^{k}), \text{ and }$ $| \mathcal{R}_{\mathcal{E}_{k}}(\mathcal{F}_{\lambda,L}) = 0 \} \in \mathcal{O}(k^{|\mathcal{Y}|-1}).$ rridor length k is such a sequence. In this case, $\lambda_k = \frac{k-1}{k}$, and $L_k = \sqrt{2}ek$.

histories are irrelevant

values, allows for larger Libschitz constant v traces can effectively smooth out noise ength-4 histories



0.4 0.2 Transition probability p



Experiments

