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Memory

» Memory is necessary in many partially observable environments

— Memory: a compressed representation of the history of observations
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Memory

» Memory is necessary in many partially observable environments

— Memory: a compressed representation of the history of observations

» Length-m window (“frame stacking”):

Wilm (Yo, Y—1, ) = (Yo, Y=1, oor y Y—mos1)
2D I
history h
» Our approach: the memory trace with forgetting factor A € [0,1):
[h|—T1

a(h)=(1-4) 3 Ny
k=0

— Recursively computable: z)(yo,y—1,-..) = Aza(Y—1,Y-2, .. ) + (1 — A)yo
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Memory traces in the T-maze

new memory old memory new observation

Memory update: @tH: A @t‘|‘ (T—A) EDt+1
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Memory traces in the T-maze

new memory old memory new observation
Memory update: Ep = A EB + (1 —=A7A) ED
t+1 t t+1
—

Memory traces during a trajectory (A = 0.8):

D, B D, D,

Onno Eberhard - Partially Observable RL with Memory Traces - [Bakker 2001]




Memory traces in the T-maze

new memory old memory new observation
Memory update: Ep = A EB + (1 —=A7A) ED
t+1 t t+1
—

Memory traces during a trajectory (A = 0.8):

3,8, D, B, D,

Onno Eberhard - Partially Observable RL with Memory Traces - [Bakker 2001]




Memory traces in the T-maze

new memory old memory new observation

Memory update: EBH]: A EBt+ (T—A) EDt+1

—

Memory traces during a trajectory (A = 0.8):

D, 8 DD DB, B,

Onno Eberhard - Partially Observable RL with Memory Traces - [Bakker 2001]




Memory traces in the T-maze

new memory old memory new observation
Memory update: Ep = A EB + (1 —=A7A) ED
t+1 t t+1
—

Memory traces during a trajectory (A = 0.8):

D, 8 D, D DB, DD,

Onno Eberhard - Partially Observable RL with Memory Traces - [Bakker 2001]




Memory traces in the T-maze

new memory old memory new observation
Memory update: Ep = A EB + (1 —=A7A) ED
t+1 t t+1
—

Memory traces during a trajectory (A = 0.8):

0,8 DD DB, DD.D

Onno Eberhard - Partially Observable RL with Memory Traces - [Bakker 2001]




Memory traces in the T-maze

new memory old memory new observation

Memory update: EDH]: A @t+ (T—A) EDt+1

Memory traces during a trajectory (A = 0.8):

0,8 DD DB, D DB.DB B,

Onno Eberhard - Partially Observable RL with Memory Traces - [Bakker 2001]




Memory traces in the T-maze

new memory old memory new observation

Memory update: @tH: A @t‘|‘ (T—A) EDt+1

Memory traces during a trajectory (A = 0.8): .

0,8 DD DB, D DB.DB B,

Onno Eberhard - Partially Observable RL with Memory Traces - [Bakker 2001]




Offline on-policy evaluation
» We consider the problem of policy evaluation with offline data

— The environment € is a hidden Markov model (no explicit policy)
— The observation space Y is one-hot
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» We consider the problem of policy evaluation with offline data

— The environment € is a hidden Markov model (no explicit policy)
— The observation space Y is one-hot

» Q: How much data do we need to accurately estimate the value function?

» Given a function class F C {Y*® — [v,V]}, find f € F that minimizes

o0

Relf) = Be | (flyoru-1-) — Y v'r(yeen)f|

t=0

where r:Y — [r, 7] (rewards), y € [0,1) (discount), v=r/(1—7v), and v =7/(1 —v)

Onno Eberhard - Partially Observable RL with Memory Traces



Offline on-policy evaluation

» We consider the problem of policy evaluation with offline data

— The environment € is a hidden Markov model (no explicit policy)
— The observation space Y is one-hot

» Q: How much data do we need to accurately estimate the value function?

» Given a function class F C {Y*® — [v,V]}, find f € F that minimizes

o0

Relf) = Be | (flyoru-1-) — Y v'r(yeen)f|

=0
where r:Y — [r, 7] (rewards), y € [0,1) (discount), v=r/(1—7v), and v =7/(1 —v)

» Window memory: F, = {f o win,, | f: Y™ — [v,V]}

Onno Eberhard - Partially Observable RL with Memory Traces



Offline on-policy evaluation

» We consider the problem of policy evaluation with offline data

— The environment € is a hidden Markov model (no explicit policy)
— The observation space Y is one-hot

» Q: How much data do we need to accurately estimate the value function?

» Given a function class F C {Y*® — [v,V]}, find f € F that minimizes

o0

Relf) = Be | (flyoru-1-) — Y v'r(yeen)f|

t=0
where r:Y — [r, 7] (rewards), y € [0,1) (discount), v=r/(1—7v), and v =7/(1 —v)
» Window memory: F, = {f o win,, | f: Y™ — [v,V]}

» Memory traces: F) = {fozy | f:Zx — [v,V]}, where Z) = {za(h) | h € Y=}
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The geometry of the trace space Zy
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The geometry of the trace space Z)
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The geometry of the trace space Z)
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The geometry of the trace space
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The geometry of the trace space Z)
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The geometry of the trace space Z)
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The geometry of the trace space Z)
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Learning value functions

Theorem (Hoeffding bound)

Learning a good value estimate seems easier if the

metric entropy He(F) of the function class F is small.

The metric entropy is a measure of “size” for the (infinite) function class.
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Learning value functions

Theorem (Hoeffding bound)

Given a dataset D of n trajectories from an environment &, a function class F,
and some € > 0, let F© be the smallest e-cover of J and f,, = argmingg. ) {f(h)—
Y 2o v'r(ye+1)). Then, with probability at least 1 — 8,

He(9) + log 2

Re(fn) < Re(F) + (v —v)? 7
n

+ O(e).

Let (X, p) be a metric space and T C X. The e-covering number N.(T) is the
cardinality of the smallest set S C X such that for every x € T, there exists a
y € S with p(x,y) < €. The metric entropy of T is defined as H¢(T) = log N(T).

Onno Eberhard - Partially Observable RL with Memory Traces



Metric entropy and memory

» For windows of length m, we have [ He(Fm) € O(Y ™) ]

— Exponential in m: long windows are expensive!
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Metric entropy and memory

» For windows of length m, we have [ He(Fm) € O(Y ™) ]

— Exponential in m: long windows are expensive!

» Memory traces with forgetting factor A < % remember everything

— There is no compression: z, is invertible and therefore m
> Need to “zoom in” to differentiate histories that only differ far in the past
» The “resolution” of a function class is given by its Lipschitz constant

» We consider the class Jy1 = {f oz, | f: 2y — [v,V], f is L-Lipschitz}

Lemma (metric entropy of Fy 1)

He(Fp) € O(L=RtBED) - where  dy = I;Cg)(g]l;é)'\)
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Fast forgetting: A < %

Theorem (window — trace)

Windows are not more efficient than memory traces.
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Fast forgetting: A < %

Theorem (window — trace)

Let m € N be a window length, 0 < A < % a forgetting factor, and define

v—v

V2(1 = 2A0)Am-1"

Lim) =
Then, for every € > 0 and every environment &,

Re(Farm) < Re(Fm) and  He(Farmy) € O(1Y™) = O(He(Fm)).
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Fast forgetting: A < %

Theorem (trace — window)

1

Memory traces with A < 5 seem no more efficient than windows.
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Fast forgetting: A < %

Theorem (trace — window)

Let A € [0,1) be a forgetting factor, L > 0 a Lipschitz constant, ¢ € (0,L), and
define

_ | log(L/e)
mid, b= [log(l iy 1

Then, for every environment &,
Re(Fmap) < Re(Far) + 0(e) and  He(Fmpp) € OLM).

If A< ], then dy < [Y|—1.
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- 1
Slow forgetting: A > 5

Theorem (T-maze)

Memory traces (A > %) can be significantly more efficient than windows.
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Slow forgetting: A > %

Theorem (T-maze)

There exists a sequence (£x) of environments (with constant observation space
Y) with the property that, for every € > 0,
mln{H (Fm) | Rey(Im) =0} € Q(IY), and

amin min (He(Tr) | Re, (Tar) = 0) € ORH).
S

In particular, the T-maze with corridor length k is such a sequence. In this case,

the minima are attained at my =k, Ax = &7, and Ly < v/2ek.
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Forgetting: fast and slow

> For A < %, learning with windows and traces seems equivalent
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Why can traces be more efficient?
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Forgetting: fast and slow

> For A < %, learning with windows and traces seems equivalent

» For A > %, there exist environments where traces are much more efficient

Why can traces be more efficient?

» In the T-maze, most of the |Y|* histories are irrelevant — allows for small L
» In other environments, memory traces can effectively smooth out noise
p(x¢ =1|hy =1110) Optimal A for length-4 histories
0 02 04 06 038 10 02 04 06 08 1 P
z [ |
5 ()11
;"S 0.4 ] _ / \ q q / \ ] _
E 0.2 q / \ / Y q
b N A% N A%
o
5 0.2 0.4 0.2 0.4 0 1 0 1

Transition probability p Transition probability p
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Deep RL with memory traces

Sutton’s noisy random walk

PPO in T-Maze

environment
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Summary

Memory is important in partially observable environments
We analyze memory traces: exponential moving averages of past observations

There is a close connection to sliding window memory

>
>
>
» We prove that memory traces are strictly more powerful than sliding windows
» Memory traces are an effective drop-in replacement for frame stacking

>

Paper, code & more at onnoeberhard.com/memory-traces

Thank you for listening!
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