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Memory

▶ Memory is necessary in many partially observable environments
→ Memory: a compressed representation of the history of observations

▶ Length-𝑚 window (“frame stacking”):

winm(𝑦0, 𝑦−1, …⏟⏟⏟⏟⏟⏟⏟⏟⏟
history h

) ≐ (𝑦0, 𝑦−1, … , 𝑦−m+1)

▶ Our approach: the memory trace with forgetting factor 𝜆 ∈ [0, 1):

𝑧λ(ℎ) ≐ (1 − 𝜆)
|h|−1

∑
k=0

𝜆k𝑦−k

→ Recursively computable: 𝑧λ(𝑦0, 𝑦−1, … ) = 𝜆𝑧λ(𝑦−1, 𝑦−2, … ) + (1 − 𝜆)𝑦0
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Memory update:

new memory

𝑡 + 1
= 𝜆

old memory

𝑡
+ (1 − 𝜆)

new observation

𝑡 + 1
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Offline on-policy evaluation

▶ We consider the problem of policy evaluation with offline data
→ The environment ℰ is a hidden Markov model (no explicit policy)
→ The observation space 𝒴 is one-hot

▶ Q: How much data do we need to accurately estimate the value function?
▶ Given a function class ℱ ⊂ {𝒴∞ → [𝑣, 𝑣]}, find 𝑓 ∈ ℱ that minimizes

ℛℰ(𝑓) ≐ 𝔼ℰ[{𝑓(𝑦0, 𝑦−1, … ) −
∞
∑
t=0

𝛾t𝑟(𝑦t+1)}
2],

where 𝑟 ∶ 𝒴 → [𝑟, 𝑟] (rewards), 𝛾 ∈ [0, 1) (discount), 𝑣 ≐ 𝑟/(1−𝛾), and 𝑣 ≐ 𝑟/(1−𝛾)
▶ Window memory: ℱm ≐ {𝑓 ∘winm ∣ 𝑓 ∶ 𝒴m → [𝑣, 𝑣]}
▶ Memory traces: ℱλ ≐ {𝑓 ∘ 𝑧λ ∣ 𝑓 ∶ 𝒵λ → [𝑣, 𝑣]}, where 𝒵λ ≐ {𝑧λ(ℎ) ∣ ℎ ∈ 𝒴∞}
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The geometry of the trace space 𝒵𝜆

∅

−0.5 0.5
(z2 − z3)/

√
2

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

(2
z 1

−
z 2

−
z 3

)/
√ 6

Y = {a, b, c} λ = 0.50
0 1

0

H
is
to
ry

le
ng

th
m

Onno Eberhard ⋅ Partially Observable RL with Memory Traces 6



The geometry of the trace space 𝒵𝜆

a

bc

−0.5 0.5
(z2 − z3)/

√
2

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

(2
z 1

−
z 2

−
z 3

)/
√ 6

Y = {a, b, c} λ = 0.50
0 1

0

1

H
is
to
ry

le
ng

th
m

Onno Eberhard ⋅ Partially Observable RL with Memory Traces 6



The geometry of the trace space 𝒵𝜆

aa

abac

ba

bbbc

ca

cbcc

−0.5 0.5
(z2 − z3)/

√
2

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

(2
z 1

−
z 2

−
z 3

)/
√ 6

Y = {a, b, c} λ = 0.50
0 1

0

1

2

H
is
to
ry

le
ng

th
m

Onno Eberhard ⋅ Partially Observable RL with Memory Traces 6



The geometry of the trace space 𝒵𝜆

aaa

aabaac

aba

abbabc

aca

acbacc

baa

babbac

bba

bbbbbc

bca

bcbbcc

caa

cabcac

cba

cbbcbc

cca

ccbccc

−0.5 0.5
(z2 − z3)/

√
2

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

(2
z 1

−
z 2

−
z 3

)/
√ 6

Y = {a, b, c} λ = 0.50
0 1

0

1

2

3

H
is
to
ry

le
ng

th
m

Onno Eberhard ⋅ Partially Observable RL with Memory Traces 6



The geometry of the trace space 𝒵𝜆

−0.5 0.5
(z2 − z3)/

√
2

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

(2
z 1

−
z 2

−
z 3

)/
√ 6

Y = {a, b, c} λ = 0.50
0 1

0

1

2

3

4

H
is
to
ry

le
ng

th
m

Onno Eberhard ⋅ Partially Observable RL with Memory Traces 6



The geometry of the trace space 𝒵𝜆

−0.5 0.5
(z2 − z3)/

√
2

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

(2
z 1

−
z 2

−
z 3

)/
√ 6

Y = {a, b, c} λ = 0.50
0 1

0

1

2

3

4

5

H
is
to
ry

le
ng

th
m

Onno Eberhard ⋅ Partially Observable RL with Memory Traces 6



The geometry of the trace space 𝒵𝜆

−0.5 0.5
(z2 − z3)/

√
2

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

(2
z 1

−
z 2

−
z 3

)/
√ 6

Y = {a, b, c} λ = 0.50
0 1

0

1

2

3

4

5

6

H
is
to
ry

le
ng

th
m

Onno Eberhard ⋅ Partially Observable RL with Memory Traces 6



The geometry of the trace space 𝒵𝜆

−0.5 0.5
(z2 − z3)/

√
2

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

(2
z 1

−
z 2

−
z 3

)/
√ 6

Y = {a, b, c} λ = 0.50
0 1

0

1

2

3

4

5

6

7

H
is
to
ry

le
ng

th
m

Onno Eberhard ⋅ Partially Observable RL with Memory Traces 6



The geometry of the trace space 𝒵𝜆

−0.5 0.5
(z2 − z3)/

√
2

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

(2
z 1

−
z 2

−
z 3

)/
√ 6

Y = {a, b, c} λ = 0.50
0 1

0

1

2

3

4

5

6

7

8

H
is
to
ry

le
ng

th
m

Onno Eberhard ⋅ Partially Observable RL with Memory Traces 6



The geometry of the trace space 𝒵𝜆

∅

a

bc
..abcabca..b..c..

−0.5 0.5
(z2 − z3)/

√
2

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

(2
z 1

−
z 2

−
z 3

)/
√ 6

Y = {a, b, c} λ = 0.50
0 1

0

1

2

3

4

5

6

7

8

H
is
to
ry

le
ng

th
m

Onno Eberhard ⋅ Partially Observable RL with Memory Traces 6



Learning value functions

Theorem (Hoeffding bound)

Given a dataset 𝒟 of 𝑛 trajectories from an environment ℰ, a function class ℱ,
and some 𝜖 > 0, let ℱ𝜖 be the smallest 𝜖-cover of ℱ and 𝑓n ≐ argminf∈ℱ𝜖 ∑𝒟{𝑓(ℎ)−
∑∞

t=0 𝛾t𝑟(𝑦t+1)}2. Then, with probability at least 1 − 𝛿,

ℛℰ(𝑓n) ≤ ℛℰ(ℱ) + ( ̅𝑣 − 𝑣̲̲)2√
𝐻𝜖(ℱ) + log 2

δ
2𝑛 + 𝒪(𝜖).

Learning a good value estimate seems easier if the
metric entropy 𝐻𝜖(ℱ) of the function class ℱ is small.

Let (𝑋, 𝜌) be a metric space and 𝑇 ⊂ 𝑋. The 𝜖-covering number 𝑁𝜖(𝑇) is the
cardinality of the smallest set 𝑆 ⊂ 𝑋 such that for every 𝑥 ∈ 𝑇, there exists a
𝑦 ∈ 𝑆 with 𝜌(𝑥, 𝑦) ≤ 𝜖. The metric entropy of 𝑇 is defined as 𝐻𝜖(𝑇) ≐ log𝑁𝜖(𝑇).

The metric entropy is a measure of “size” for the (infinite) function class.
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Metric entropy and memory
▶ For windows of length 𝑚, we have 𝐻𝜖(ℱm) ∈ Θ(|𝒴|m)

→ Exponential in 𝑚: long windows are expensive!

▶ Memory traces with forgetting factor 𝜆 < 1
2 remember everything

→ There is no compression: 𝑧λ is invertible and therefore 𝐻𝜖(ℱλ) = ∞

▶ Need to “zoom in” to differentiate histories that only differ far in the past
▶ The “resolution” of a function class is given by its Lipschitz constant
▶ We consider the class ℱλ,L ≐ {𝑓 ∘ 𝑧λ ∣ 𝑓 ∶ 𝒵λ → [𝑣, 𝑣], 𝑓 is 𝐿-Lipschitz}
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Lemma (metric entropy of ℱλ,L)

𝐻𝜖(ℱλ,L) ∈ 𝒪(𝐿min{dλ,|𝒴|−1}) where 𝑑λ ≐ log |𝒴|
log(1/𝜆)
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Fast forgetting: 𝜆 < 1
2

Theorem (window → trace)

Let 𝑚 ∈ ℕ be a window length, 0 < 𝜆 < 1
2 a forgetting factor, and define

𝐿(𝑚) = 𝑣 − 𝑣
√2(1 − 2𝜆)𝜆m−1

.

Then, for every 𝜖 > 0 and every environment ℰ,

ℛℰ(ℱλ,L(m)) ≤ ℛℰ(ℱm) and 𝐻𝜖(ℱλ,L(m)) ∈ 𝒪(|𝒴|m) = 𝒪(𝐻𝜖(ℱm)).

Windows are not more efficient than memory traces.
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Fast forgetting: 𝜆 < 1
2

Theorem (trace → window)

Let 𝜆 ∈ [0, 1) be a forgetting factor, 𝐿 > 0 a Lipschitz constant, 𝜖 ∈ (0, 𝐿), and
define

𝑚(𝜆, 𝐿) = ⌈ log(𝐿/𝜖)
log(1/𝜆)⌉.

Then, for every environment ℰ,

ℛℰ(ℱm(λ,L)) ≤ ℛℰ(ℱλ,L) + 𝒪(𝜖) and 𝐻𝜖(ℱm(λ,L)) ∈ 𝒪(𝐿dλ).

If 𝜆 < 1
2 , then 𝑑λ < |𝒴| − 1.

Memory traces with 𝜆 < 1
2 seem no more efficient than windows.
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Slow forgetting: 𝜆 ≥ 1
2

Theorem (T-maze)

There exists a sequence (ℰk) of environments (with constant observation space
𝒴) with the property that, for every 𝜖 > 0,

min
m∈ℕ

{𝐻𝜖(ℱm) ∣ ℛℰk(ℱm) = 0} ∈ Ω(|𝒴|k), and

min
λ∈[0,1)

min
L≥0

{𝐻𝜖(ℱλ,L) ∣ ℛℰk(ℱλ,L) = 0} ∈ 𝒪(𝑘|𝒴|−1).

In particular, the T-maze with corridor length 𝑘 is such a sequence. In this case,
the minima are attained at 𝑚k = 𝑘, 𝜆k = k−1

k , and 𝐿k ≤ √2e𝑘.

Memory traces (𝜆 ≥ 1
2) can be significantly more efficient than windows.
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Forgetting: fast and slow
▶ For 𝜆 < 1

2 , learning with windows and traces seems equivalent

▶ For 𝜆 ≥ 1
2 , there exist environments where traces are much more efficient

Why can traces be more efficient?

▶ In the T-maze, most of the |𝒴|k histories are irrelevant → allows for small 𝐿
▶ In other environments, memory traces can effectively smooth out noise
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Deep RL with memory traces
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Summary

▶ Memory is important in partially observable environments
▶ We analyze memory traces: exponential moving averages of past observations
▶ There is a close connection to sliding window memory
▶ We prove that memory traces are strictly more powerful than sliding windows
▶ Memory traces are an effective drop-in replacement for frame stacking
▶ Paper, code & more at onnoeberhard.com/memory-traces

Thank you for listening!
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