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Abstract
Reinforcement learning has traditionally focused on learning state-dependent policies to solve opti-
mal control problems in a closed-loop fashion. In this work, we introduce the paradigm of open-loop
reinforcement learning where a fixed action sequence is learned instead. We present three new
algorithms: one robust model-based method and two sample-efficient model-free methods. Rather
than basing our algorithms on Bellman’s equation from dynamic programming, our work builds
on Pontryagin’s principle from the theory of open-loop optimal control. We provide convergence
guarantees and evaluate all methods empirically on a pendulum swing-up task, as well as on two
high-dimensional MuJoCo tasks, significantly outperforming existing baselines.
Keywords: Reinforcement learning, Open-loop control

1. Introduction
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Figure 1: Comparison of closed-loop (feedback) and open-
loop (feedforward) control. In closed-loop reinforcement
learning (RL), the goal is to learn a policy (π). In open-loop
RL, a fixed sequence of actions (u0:T−1) is learned instead,
with the action ut independent of the states x0:t.

Reinforcement learning (RL) refers to
“the optimal control of incompletely-
known Markov decision processes”
(Sutton and Barto, 2018, p. 2). It has
traditionally focused on applying dy-
namic programming algorithms, such
as value iteration or policy iteration,
to situations where the environment is
unknown. These methods solve opti-
mal control problems in a closed-loop
fashion by learning feedback policies,
which map states xt to actions ut.
In contrast, this work introduces the
paradigm of open-loop reinforcement
learning (OLRL), in which fixed ac-
tion sequences u0:T−1, over a horizon
T , are learned instead. The closed-loop and open-loop control paradigms are illustrated in Fig. 1.

An open-loop controller receives no observations from its environment. This makes it impossible
to react to unpredictable events, which is essential in many problems, particularly those with stochastic
or unstable dynamics. For this reason, RL research has historically focused exclusively on closed-
loop control. However, many environments are perfectly predictable. Consider the classic example of
swinging up an inverted pendulum. If there are no disturbances, then this task can be solved flawlessly
without feedback (as we demonstrate in Section 4.1). Where open-loop control is viable, it brings
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considerable benefits. As there is no need for sensors, it is generally much cheaper than closed-loop
control. It can also operate at much higher frequencies, since there is no bandwidth bottleneck due
to sensor delays or computational processing of measurements. Importantly, the open-loop optimal
control problem is much simpler, as it only involves optimizing an action sequence (finding one
action per time step). In contrast, closed-loop optimal control involves optimizing a policy (finding
one action for each state of the system), which can be considerably more expensive. In this way,
open-loop control circumvents the curse of dimensionality without requiring function approximation.

For these reasons, open-loop control is widely used in practice (Diehl et al., 2006; van Zundert
and Oomen, 2018; Sferrazza et al., 2020), and there exists a large body of literature on the theory
of open-loop optimal control (Pontryagin et al., 1962). However, the setting of incompletely-known
dynamics has received only little attention. In this work, we introduce a family of three new open-
loop RL algorithms by adapting the existing theory to this setting. Whereas closed-loop RL is largely
based on approximating the Bellman equation, the central equation of dynamic programming, we
base our algorithms on approximations of Pontryagin’s principle, the central equation of open-loop
optimal control. We first introduce a model-based method whose convergence we prove to be robust
to modeling errors. This is a novel and non-standard result which depends on a careful analysis of the
algorithm. We then extend this procedure to settings with completely unknown dynamics and propose
two fully online model-free methods. Finally, we empirically demonstrate the robustness and sample
efficiency of our methods on an inverted pendulum swing-up task and on two complex MuJoCo tasks.
Related work. Our work is inspired by numerical optimal control theory (Betts, 2010; Geering,
2007), which deals with the numerical solution of trajectory optimization problems. Whereas existing
methods assume that the dynamics are known, our algorithms only require an approximate model
(model-based OLRL) or no model at all (model-free OLRL), and rely on a simulator to provide
samples. An in-depth review of related work can be found in Appendix A.

2. Background

We consider a reinforcement learning setup with continuous state and action spaces X ⊂ RD and
U ⊂ RK . Each episode lasts T steps, starts in the fixed initial state x0, and follows the deterministic
dynamics f : X × U → X , such that xt+1 = f(xt, ut) for all times t ∈ [T − 1]0.1 After every
transition, a deterministic reward r(xt, ut) ∈ R is received, and at the end of an episode, an additional
terminal reward rT (xT ) ∈ R is computed. The value of state xt at time t is the sum of future rewards

vt(xt;ut:T−1)
.
=

T−1∑
τ=t

r(xτ , uτ ) + rT (xT ) = r(xt, ut) + vt+1{f(xt, ut);ut+1:T−1},

where we defined vT as the terminal reward function rT . Our goal is to find a sequence of actions
u0:T−1 ∈ UT maximizing the total sum of rewards J(u0:T−1)

.
= v0(x0;u0:T−1). We will tackle this

trajectory optimization problem using gradient ascent. Although our goal is to learn an open-loop
controller (an action sequence), we assume that the state is fully observed during the training process.
Pontryagin’s principle. The gradient of the objective function J with respect to the action ut is

∇utJ(u0:T−1) = ∇ur(xt, ut) +∇uf(xt, ut)∇xvt+1(xt+1;ut+1:T−1)︸ ︷︷ ︸
λt+1∈RD

, (1)

1. For n ∈ N, we write [n]
.
= {1, 2, . . . , n} and [n]0

.
= {0, 1, . . . , n}. Unless explicitly mentioned, all time-dependent

equations hold for all t ∈ [T − 1]0.
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where the terms of J related to the earlier time steps τ ∈ [t− 1]0 vanish, as they do not depend on
ut. We denote Jacobians as (∇yf)i,j

.
=

∂fj
∂yi

. The costates λ1:T are defined as the gradients of the
value function along the given trajectory. They can be computed through a backward recursion:

λT
.
= ∇vT (xT ) = ∇rT (xT ) (2)

λt
.
= ∇xvt(xt;ut:T−1) = ∇xr(xt, ut) +∇xf(xt, ut)λt+1. (3)

The gradient (1) of the objective function can thus be obtained by means of one forward pass through
the dynamics f (a rollout), yielding the states x0:T , and one backward pass through (2) and (3),
yielding the costates λ1:T . The stationarity condition arising from setting (1) to zero, where the
costates are computed from (2) and (3), is known as Pontryagin’s principle. (Pontryagin’s principle
in fact goes much further than this, as it generalizes to infinite-dimensional and constrained settings.)
We re-derive (1) to (3) using the method of Lagrange multipliers in Appendix C.

3. Method
If the dynamics are known, then the trajectory can be optimized by performing gradient ascent
with the gradients computed according to Pontryagin’s equations (1) to (3). In this work, we adapt
this idea to the domain of reinforcement learning, where the dynamics are unknown. In RL, we
are able to interact with the environment, so the forward pass through the dynamics f is not an
issue. However, the gradient computation according to Pontryagin’s principle requires the Jacobians
∇xft

.
= ∇xf(xt, ut) and ∇uft

.
= ∇uf(xt, ut) of the unknown dynamics. In our methods, which

follow the structure of Algorithm 1, we therefore replace these Jacobians by estimates At ≃ ∇xft
and Bt ≃ ∇uft. Before discussing concrete methods for open-loop RL, whose main concern is the
construction of appropriate estimates At and Bt, we first show that replacing∇xft and∇uft in this
way is a good idea. In particular, we show that, under certain assumptions on the accuracy of At and
Bt, Algorithm 1 converges to an unbiased local optimum of the true objective J . In the following
sections we then discuss model-based and model-free open-loop RL methods.

3.1. Convergence of Algorithm 1
Algorithm 1: Open-loop reinforcement learning
Input: Optimization steps N ∈ N, step size η > 0

1 Initialize u0:T−1 (initial action sequence)
2 for k = 1, 2, . . . , N do
3 x0:T ← rollout(u0:T−1) // Forw. pass

// Backward pass

4 λ̃T ← ∇rT (xT )
5 for t = T − 1, T − 2, . . . , 0 do

// Jacobian estimation
6 At, Bt ≃ ∇xf(xt, ut),∇uf(xt, ut)

// Pontryagin update

7 λ̃t ← ∇xr(xt, ut) +Atλ̃t+1

8 gt ← ∇ur(xt, ut) +Btλ̃t+1

9 ut ← ut + ηgt // Grad. ascent

Our convergence result relies on the fol-
lowing three assumptions.

Assumption 1 All rewards are en-
coded in the terminal reward rT . In
other words, r(x, u) = 0 for all x ∈ X
and u ∈ U .

This assumption is without loss of gen-
erality, since we can augment the state
xt by a single real variable ρt that cap-
tures the sum of the running rewards
(i.e., ρ0 = 0 and ρt+1 = ρt + r(xt, ut)).
An equivalent setup that satisfies As-
sumption 1 is then obtained by defining
a new terminal reward function r′T (xT , ρT )

.
= rT (xT )+ρT and setting the running rewards r′ to zero.

3



EBERHARD VERNADE MUEHLEBACH

Assumption 2 There exist constants γ, ζ > 0 with γ + ζ + γζ < 1 such that for any trajectory
(u0:T−1, x0:T ) encountered by Algorithm 1, the following properties hold for all t ∈ [T − 1]0:

(a) The error of At+s is bounded, for all s ∈ [T − t], in the following way:

∥At+s −∇xft+s∥ ≤
γ

3s
¯
σ(∇uft)

σ̄(∇uft)

{
s−1∏
i=1

¯
σ(∇xft+i)

σ̄(∇xft+i)

}
¯
σ(∇xft+s).

(b) The error of Bt is bounded in the following way: ∥Bt −∇uft∥ ≤ ζ
¯
σ(∇uft).

Here,
¯
σ(A) and σ̄(A) denote the minimum and maximum singular value of A, and ∥A∥ .

= σ̄(A).

This assumption restricts the errors of the estimates At and Bt that are used in place of the true
Jacobians ∇xft and ∇uft in Algorithm 1. Although the use of the true system for collecting rollouts
prevents a buildup of error in the forward pass, any error in the approximate costate λ̃t can still be
amplified by the Jacobian estimates of earlier time steps, Aτ for τ ∈ [t−1], during the backward pass.
Thus, to ensure convergence to a stationary point of the objective function J , the errors of these esti-
mates need to be small. This is particularly important for t close to T , as these errors will be amplified
over more time steps. Assumption 2 provides a quantitative characterization of this intuition.

Assumption 3 There exists a constant L > 0 such that, for all action sequences uA0:T−1, u
B
0:T−1 ∈

UT and all times t ∈ [T − 1]0, ∥∇utJ(u
A
0:T−1)−∇utJ(u

B
0:T−1)∥ ≤ L∥uAt − uBt ∥.

This final assumption states that the objective function J is L-smooth with respect to the action ut at
each time step t ∈ [T − 1]0, which is a standard assumption in nonconvex optimization. This implies
that the dynamics f are smooth as well. We are now ready to state the convergence result.

Theorem 4 Suppose Assumptions 1 to 3 hold with γ, ζ, and L. Let µ .
= 1 − γ − ζ − γζ and

ν
.
= 1 + γ + ζ + γζ. If the step size η is chosen small enough such that α .

= µ− 1
2ηLν

2 is positive,

then the iterates (u(k)0:T−1)
N−1
k=0 of Algorithm 1 satisfy, for all N ∈ N and t ∈ [T − 1]0,

1

N

N−1∑
k=0

∥∇utJ(u
(k)
0:T−1)∥

2 ≤
J⋆ − J(u

(0)
0:T−1)

αηN
,

where J⋆ .
= supu∈UT J(u) is the optimal value of the initial state.

Proof See Appendix E. The proof depends on a novel intricate analysis of the backpropagation
procedure in the case of an accurate forward pass and an inaccurate backward pass. This technique
may also be applicable to other (non-control) domains, as described in Appendix A.

3.2. Model-based open-loop RL

The most direct way to approximate the Jacobians∇xft and∇uft is by using a (learned or manually
designed) differentiable model f̃ : X ×U → X of the dynamics f and setting At = ∇xf̃(xt, ut) and
Bt = ∇uf̃(xt, ut) in Line 6 of Algorithm 1. Theorem 4 guarantees that this model-based open-loop
RL method (see Algorithm B.1) is robust to a certain amount of modeling error. In contrast to this,
consider the more naive method of using the model to directly obtain a gradient by differentiating

J(u0:T−1) ≃ r(x0, u0) + r{f̃(x0, u0)︸ ︷︷ ︸
x̃1

, u1}+ · · ·+ rT {f̃(f̃(· · · f̃(f̃(x0, u0), u1) · · · ), uT−1)︸ ︷︷ ︸
x̃T

}
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with respect to the actions u0:T−1 using the backpropagation algorithm. In Appendix D, we show that
this planning approach is exactly equivalent to an approximation of Algorithm 1 where, in addition
to setting At = ∇xf̃(xt, ut) and Bt = ∇uf̃(xt, ut), the forward pass of Line 3 is replaced by the
imagined forward pass x̃0:T through the model f̃ . In Section 4, we empirically demonstrate that this
planning method, whose convergence is not guaranteed by Theorem 4, is much less robust to mod-
eling errors than the open-loop RL approach. Note that neither method is related to model-predictive
control (MPC), which relies on measurements to re-plan at every step. MPC is a closed-loop method
that solves a fundamentally different problem from the one we address in this work.

3.3. Model-free on-trajectory open-loop RL

Access to a reasonably accurate model may not always be feasible, and as Algorithm 1 only requires
the Jacobians of the dynamics along the current trajectory, a global model is also not necessary. In
the following two sections, we propose two methods that directly estimate the Jacobians ∇xft and
∇uft from rollouts in the environment. We call these methods model-free, as the estimated Jacobians
are only valid along the current trajectory, and thus cannot be used for planning.

Our goal is to estimate the Jacobians ∇xf(x̄t, ūt) and ∇uf(x̄t, ūt) that lie along the trajectory
induced by the action sequence ū0:T−1. These Jacobians measure how the next state (x̄t+1) changes
if the current state or action (x̄t, ūt) are slightly perturbed. More formally, the dynamics f may be
linearized about the reference trajectory (ū0:T−1, x̄0:T ) as

f(xt, ut)− f(x̄t, ūt)︸ ︷︷ ︸
∆xt+1

≃ ∇xf(x̄t, ūt)
⊤ (xt − x̄t)︸ ︷︷ ︸

∆xt

+∇uf(x̄t, ūt)
⊤ (ut − ūt)︸ ︷︷ ︸

∆ut

,

which is a valid approximation if the perturbations ∆x0:T and ∆u0:T−1 are small. By collecting a
dataset of M ∈ N rollouts with slightly perturbed actions, we can thus estimate the Jacobians by
solving the (analytically tractable) least-squares problem

argmin
[A⊤

t B⊤
t ]∈RD×(D+K)

M∑
i=1

∥A⊤
t ∆x

(i)
t +B⊤

t ∆u
(i)
t −∆x

(i)
t+1∥

2. (4)

This technique is illustrated in Fig. 2a (dashed purple line). Using these estimates in Algorithm 1
yields a model-free method we call on-trajectory, as the gradient estimate relies only on data
generated based on the current trajectory (see Algorithm B.2 for details). We see a connection to
on-policy methods in closed-loop reinforcement learning, where the policy gradient estimate (or the
Q-update) similarly depends only on data generated under the current policy. Like on-policy methods,
on-trajectory methods will benefit greatly from the possibility of parallel environments, which could
reduce the effective complexity of the forward pass stage from M+1 rollouts to that of a single rollout.
Exploiting the Markovian structure. Consider a direct linearization of the objective function J
about the current trajectory. Writing the action sequence as a vector ū .

= vec(ū0:T−1) ∈ RTK , this
linearization is given, for u ∈ RTK close to ū, by

J(u) ≃ J(ū) +∇J(ū)⊤(u− ū).

We can thus estimate the gradient of the objective function by solving the least squares problem

∇J(ū) ≃ argmin
g∈RTK

M∑
i=1

{J(ui)− J(ū)− g⊤(ui − ū)}2,

5
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(x̄t, ūt)(xt, ut)i

∆x(i)
t+1

∆x(i)
t
,∆u(i)

t

ft
.
= f(x̄t, ūt), ∆x

.
= x− x̄t , ∆u

.
= u− ūt

x̄t+1

x
(i)
t+1

(a)

f(x, u)
ft +∇xf>t ∆x+∇uf>t ∆u
ft + A>t ∆x+ B>t ∆u (least squares fit)

A>t x+ B>t u+ ct (least squares fit)

(xt, ut)k−3 (xt, ut)k−2 (xt, ut)k−1 (xt, ut)k

x
(k−3)
t+1

x
(k−2)
t+1

x
(k−1)
t+1 x

(k)
t+1

(b)

Reference transition
M perturbed transitions

f(x, u)
Transitions of subsequent trajectories
Linearizations of f at subsequent trajectories
Least squares fit weighting all points equally

Figure 2: (a) The Jacobians of f (slope of the green linearization) at the reference point (x̄t, ūt) can
be estimated from the transitions {(x(i)t , u

(i)
t , x

(i)
t+1)}Mi=1 of M perturbed rollouts. (b) The Jacobians

of subsequent trajectories (indexed by k) remain close. To estimate the Jacobian at iteration k, the
most recent iterate (k − 1) is more relevant than older iterates.

where {ui} are M ∈ N slightly perturbed action sequences. Due to the dimensionality of ū, this
method requires O(TK) rollouts to estimate the gradient. In contrast to this, our approach leverages
the Markovian structure of the problem, including the fact that we observe the states x0:T in each
rollout. As the Jacobians are estimated jointly at all time steps, we can expect to get a useful gradient
estimate from only O(D2 +DK) rollouts, which significantly reduces the sample complexity if T
is large. This gain in efficiency is demonstrated empirically in Section 4.

3.4. Model-free off-trajectory open-loop RL

The on-trajectory algorithm is sample-efficient in the sense that it leverages the problem structure,
but a key inefficiency remains: the rollout data sampled at each iteration is discarded after the action
sequence is updated. In this section, we propose an off-trajectory method that implicitly uses the
data from previous trajectories to construct the Jacobian estimates. Our approach is based on the
following observation. If the dynamics f are smooth and the step size η is small, then the updated
trajectory (u

(k)
0:T−1, x

(k)
0:T ) will remain close to the previous iterate (u(k−1)

0:T−1, x
(k−1)
0:T ). Furthermore, the

Jacobians along the updated trajectory will be similar to the previous Jacobians, as illustrated in
Fig. 2b. Thus, we propose to estimate the Jacobians along the current trajectory from a single rollout
only by bootstrapping our estimates using the Jacobian estimates from the previous iteration.

Consider again the problem of estimating the Jacobians from multiple perturbed rollouts, illus-
trated in Fig. 2a. Instead of relying on a reference trajectory and (4), we can estimate the Jacobians
by fitting a linear regression model to the dataset of M perturbed transitions. Solving

argmin
[A⊤

t B⊤
t ct]∈RD×(D+K+1)

M∑
i=1

∥A⊤
t x

(i)
t +B⊤

t u
(i)
t + ct − x

(i)
t+1∥

2 (5)

yields an approximate linearization f(xt, ut) ≃ A⊤
t xt +B⊤

t ut + ct = Ftzt, with Ft
.
= [A⊤

t B⊤
t ct]

and zt
.
= (xt, ut, 1) ∈ RD+K+1. This approximation is also shown in Fig. 2a (dotted gray line).2

2. If we replace (4) by (5) in Algorithm B.2, we get a slightly different on-trajectory method with similar performance.
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At iteration k, given the estimate F
(k−1)
t and a new point z(k)t = (x

(k)
t , u

(k)
t , 1) with corresponding

target x(k)t+1, computing the new estimate F
(k)
t is a problem of online linear regression. We solve this

regression problem using an augmented version of the recursive least squares (RLS) algorithm (e.g.,
Ljung, 1999, Sec. 11.2). By introducing a prior precision matrix Q

(0)
t

.
= q0I for each time t, where

q0 > 0, we compute the update at iteration k ∈ N (see Algorithm B.3) as

Q
(k)
t = αQ

(k−1)
t + (1− α)q0I + z

(k)
t {z

(k)
t }⊤ (6)

F
(k)
t = F

(k−1)
t + {Q(k)

t }−1z
(k)
t {x

(k)
t+1 − F

(k−1)
t z

(k)
t }⊤.

Forgetting and stability. The standard RLS update of the precision matrix corresponds to (6) with
α = 1. In the limit as q0 → 0, the RLS algorithm is equivalent to the batch processing of (5), which
treats all points equally. However, as illustrated in Fig. 2b, points from recent trajectories should
be given more weight, as transitions that happened many iterations ago will give little information
about the Jacobians along the current trajectory. We can incorporate a forgetting factor α ∈ (0, 1)
into the precision update with the effect that past data points are exponentially downweighted:

Q
(k)
t = αQ

(k−1)
t + z

(k)
t {z

(k)
t }⊤ ⇝ Q

(k)
t = αkq0I +

k∑
i=1

αk−iz
(i)
t {z

(i)
t }⊤. (7)

This forgetting factor introduces a new problem: instability. If subsequent trajectories lie close to
each other, then the sum of outer products may become singular (e.g., if all z(i)t are identical, then
the sum has rank 1). As the prior q0I is downweighted, at some point inverting Q may become
numerically unstable. Our modification in (6) adds (1− α)q0I in each update, which has the effect
of removing the αk coefficient in front of q0I in (7). If the optimization procedure converges, then
eventually subsequent trajectories will indeed lie close together. Although (6) prevents issues with
instability, the quality of the Jacobian estimates will still degrade, as this estimation inherently
requires perturbations (see Section 3.3). In Algorithm B.3, we thus slightly perturb the actions used
in each rollout to get more diverse data.

4. Experiments

4.1. Inverted pendulum swing-up

We empirically evaluate our algorithms on the inverted pendulum swing-up task shown in Fig. 3. As a
performance criterion we define Jmax

.
= maxk∈[N ]0 J(u

(k)
0:T−1) as the return achieved by the best ac-

tion sequence over a complete learning process of N optimization steps. The task is considered solved
if Jmax exceeds a certain threshold. A detailed description of the task is given in Appendix F. We re-
peat our experiments with 100 random seeds and show 95% bootstrap confidence intervals in all plots.
Robustness: model-based open-loop RL. In Theorem 4, we proved that our model-based open-
loop RL method (Algorithm B.1) can accommodate some model error and still converge to a local
maximum of the true objective. To test the robustness of our algorithm against model misspecification,
we use a pendulum system with inaccurate parameters as the model f̃ . Concretely, if mi is the ith

parameter of the true system (cf. Appendix F), we sample the corresponding model parameter m̃i

from a log-normal distribution centered at mi, such that m̃i = ξmi, with ln ξ ∼ N (0, s2). The
severity of the model error is then controlled by the scale parameter s. In Fig. 4, we compare the
performance of our method with the planning procedure described in Section 3.2, in which the
forward pass is performed through the model f̃ instead of the real system f . Whereas the planning

7
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0 100Time t

Figure 3: The inverted pendulum swing-up
task. The goal is to control the force F such
that the tip of the pendulum swings up above
the base. The shown solution was found by
the on-trajectory method of Section 3.3.
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Figure 4: The model-based open-loop RL algorithm
can solve the pendulum problem reliably even with
a considerable model error.

method only solves the pendulum reliably with the true system as the model (s = 0), the open-loop
RL method can accommodate a considerable model misspecification.

In a second experiment, we represent the model f̃ by a small multi-layer perceptron (MLP). The
model is learned from 1000 rollouts, with the action sequences sampled from a pink noise distribution,
as suggested by Eberhard et al. (2023). Figure 4 compares the performance achieved with this model
by our algorithm and by the planning method. As the MLP model represents a considerable misspec-
ification of the true dynamics, only the open-loop RL method manages to solve the pendulum task.

Structure: on-trajectory open-loop RL. Our model-free on-trajectory method (Algorithm B.2)
uses rollouts to directly estimate the Jacobians needed to update the action sequence. It is clear
from (4) that more rollouts (i.e., larger M ) will give more accurate Jacobian estimates, and therefore
increase the quality of the gradient approximation. In Fig. 5, we analyze the sample efficiency of the
this algorithm by comparing the performance achieved at different values of M , where the number
N of optimization steps remains fixed. We compare our method to the finite-difference approach
described at the end of Section 3.3 and to the gradient-free cross-entropy method (CEM; Rubinstein,
1999). Both these methods also update the action sequence on the basis of M perturbed rollouts in the
environment. As in our method, the M action sequences are perturbed using Gaussian white noise
with noise scale σ. We describe both baselines in detail in Appendix H. The oracle performance
shown in Fig. 5 corresponds to Algorithm 1 with the true gradient, i.e., At = ∇xft and Bt = ∇uft.

Figure 5 shows that the performance of both the finite-difference method and CEM heavily de-
pends on the choice of the noise scale σ, whereas our method performs identically for all three values
of σ. Even for tuned values of σ, the finite-difference method and CEM still need approximately twice
as many rollouts per iteration as the open-loop RL method to reliably swing up the pendulum. At 10
rollouts per iteration, our method matches the oracle’s performance, while both baselines are below
the solved threshold. This empirically confirms our theoretical claims at the end of Section 3.3, where
we argue that exploiting the Markovian structure of the problem leads to increased sample efficiency.

Efficiency: off-trajectory open-loop RL. Finally, we turn to the method proposed in Section 3.4
(Algorithm B.3), which promises increased sample efficiency by estimating the Jacobians in an
off-trajectory fashion. The performance of this algorithm is shown in Fig. 6, where the learning
curves of all our methods as well as the two baselines and the oracle are plotted. For the on-trajectory
methods compared in Fig. 5, we chose for each the minimum number of rollouts M such that, under
the best choice for σ, the method would reliably solve the swing-up task. The hyperparameters for
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Figure 5: The on-trajectory open-loop RL method
is more sample-efficient than the finite-difference
and cross-entropy methods. It is also much less
sensitive to the noise scale σ.
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Figure 6: Learning curves on the pendulum task.
On the right, we show a longer time period in log
scale. The off-trajectory open-loop RL method
converges almost as fast as the oracle method.

all methods are summarized in Appendix I. It can be seen that the off-trajectory method, which only
requires one rollout per iteration, converges much faster than the on-trajectory open-loop RL method.

4.2. MuJoCo
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Figure 7: Learning curves of our off-trajectory open-loop RL
method and soft actor-critic (SAC) for two MuJoCo tasks.
All experiments were repeated with 20 random seeds, and
we show 95%-bootstrap confidence intervals for the average
return. The horizon is fixed to T = 100.

While the inverted pendulum is illus-
trative for analyzing our algorithms
empirically, it is a relatively simple
task with smooth, low-dimensional,
and deterministic dynamics. In
this section, we test our method
in two considerably more challeng-
ing environments: the Ant-v4 and
HalfCheetah-v4 tasks provided
by the OpenAI Gym library (Brock-
man et al., 2016; Towers et al., 2023),
implemented in MuJoCo (Todorov
et al., 2012). These environments are
high-dimensional, they exhibit non-
smooth contact dynamics, and the initial state is randomly sampled at the beginning of each episode.

We tackle these two tasks with our model-free off-trajectory method (Algorithm B.3). The
results are shown in Fig. 7, where we compare to the closed-loop RL baseline soft actor-critic (SAC;
Haarnoja et al., 2018a). It can be seen that the open-loop RL method performs comparably to SAC,
even though SAC learns a closed-loop policy that is capable of adapting its behavior to the initial
condition.3 In the figure, we also analyze the open-loop performance achieved by SAC. Whereas the
closed-loop performance is the return obtained in a rollout where the actions are taken according to the
mean of the Gaussian policy, the open-loop return is achieved by blindly executing exactly the same
actions in a new episode. The discrepancy in performance is thus completely due to the stochasticity
in the initial state. In Appendix G, we show that our method also works with a longer horizon T .

3. In this comparison, our method is further disadvantaged by the piecewise constant “health” terms in the reward
function of Ant-v4. Our method, exclusively relying on the gradient of the reward function, ignores these.
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The results demonstrate that the open-loop RL algorithm is robust to a certain level of stochasticity
in the initial state of stable dynamical systems. Additionally, while our convergence analysis depends
on the assumption of smooth dynamics, these experiments empirically demonstrate that the algorithms
are also able to tackle non-smooth contact dynamics. Finally, we see that the high dimensionality
of the MuJoCo systems is handled without complications. While soft actor-critic is an elegant and
powerful algorithm, the combination with deep function approximation can make efficient learning
more difficult. Our methods are considerably simpler and, because they are based on Pontryagin’s
principle rather than dynamic programming, they evade the curse of dimensionality by design, and
thus do not require any function approximation.

5. Discussion

This paper makes an important first step towards understanding how principles from open-loop
optimal control can be combined with ideas from reinforcement learning while preserving conver-
gence guarantees. We propose three algorithms that address this open-loop RL problem, from robust
trajectory optimization with an approximate model to sample-efficient learning under fully unknown
dynamics. This work focuses on reinforcement learning in continuous state and action spaces, a
class of problems known to be challenging (Recht, 2019). Although this setting allows us to leverage
continuous optimization techniques, we expect that most ideas will transfer to the discrete setting,
and we would be interested to see further research on this topic.

It is interesting to note that there are many apparent parallels between our open-loop RL algo-
rithms and their closed-loop counterparts. The distinction between model-based and model-free
methods is similar to that in closed-loop RL. Likewise, the on-trajectory and off-trajectory methods
we present show a tradeoff between sample efficiency and stability that is reminiscent of the tradeoffs
between on-policy and off-policy methods in closed-loop RL. The question of exploration, which is
central to reinforcement learning, also arises in our case. We do not address this complex problem
thoroughly here but instead rely on additive Gaussian noise to sample diverse trajectories.

Limitations of open-loop RL. Another important open question is how open-loop methods fit into
the reinforcement learning landscape. An inherent limitation of these methods is that an open-loop
controller can, by definition, not react to unexpected changes in the system’s state, be it due to random
disturbances or an adversary. An open-loop controller cannot balance an inverted pendulum in its
unstable position4, track a reference trajectory in noisy conditions, or play Go, where reactions to
the opponent’s moves are constantly required. In these situations open-loop RL is not viable or only
effective over a very short horizon T . However, if the disturbances are small, and the system is not
sensitive to small changes in state or action (roughly speaking, if the system is stable and non-chaotic),
then a reaction is not necessary, and open-loop RL works even for long horizons T (as we highlight
in our MuJoCo experiments, cf. Appendix G). Open-loop control can be viewed as a special case
of closed-loop control, and therefore it is clear that closed-loop control is much more powerful. Our
algorithms provide a first solution to the open-loop RL problem and are not intended to replace
any of the existing closed-loop RL algorithms. In control engineering, it is common to combine
feedback and feedforward techniques. In many situations, it can be shown that such a combination
will significantly outperform a solution based on feedback alone (e.g., Åström and Murray, 2021, Sec.
12.4). We believe that ultimately a combination of open-loop and closed-loop techniques will also
be fruitful in reinforcement learning and think that this is an important direction for future research.

4. Except with a clever trick called vibrational control (Meerkov, 1980).
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Appendix A. Related work

Historically, control theory has dealt with both closed-loop and open-loop control, and there is a broad
consensus in the control community that both are important (Åström and Murray, 2021; Skogestad
and Postlethwaite, 2005; Åström and Hägglund, 1995; Betts, 2010; Verscheure et al., 2009; Horn et al.,
2013). A simple application of open-loop methods is the control of electric stoves with simmerstats,
which regulate the temperature by periodically switching the power on and off. Open-loop control is
also applied to much more challenging problems, such as the regulation of drinking-water treatment
plants (Gamiz et al., 2020) or plasmas in a tokamak (Mattei et al., 2006). These problems have also
been of interest to the reinforcement learning community (Janjua et al., 2024; Degrave et al., 2022).

The numerical solution of trajectory optimization problems has also been studied in machine learn-
ing (Schaal and Atkeson, 2010; Howe et al., 2022). As in our approach, an important aspect of these
methods is to exploit the Markovian structure of the dynamics to reduce computation (Carraro et al.,
2015; Schäfer et al., 2007). However, in contrast to the RL setting that we consider, existing methods
address situations where the dynamics are known. Another set of related methods is known as iter-
ative learning control (Moore, 1993; Ma et al., 2022, 2023), which is a control-theoretic framework
that iteratively improves the execution of a task by optimizing over feedforward trajectories. However,
these methods are often formulated for trajectory tracking tasks, while we consider a more general
class of reinforcement learning problems. Chen and Braun (2019) explore an idea similar to that in
our Algorithm B.1; their model-based control algorithm combines a rollout in a real system with an
inaccurate model to construct an iterative LQR feedback controller. A combination of open-loop and
closed-loop methods in the context of reinforcement learning is explored by Hansen et al. (1996).

Raffin et al. (2023) have recently proposed to use open-loop control as a baseline to compare
to more complex deep reinforcement learning methods. They argue, as do we, that deep RL methods
have become very complex, and that open-loop solutions may be favored for certain tasks due to their
simplicity. Their approach is to combine a gradient-free optimization method (CMA-ES, very similar
to our baseline CEM), with prior knowledge about the problem (instead of letting the ut be completely
free, they optimize the parameters of nonlinear oscillators). The authors express their surprise about
the good performance of the open-loop method compared to state-of-the-art deep RL algorithms on
certain MuJoCo tasks, similar to the ones we consider in Section 4.2 (cf. Raffin et al., 2023, p. 8).

Recently, deep neural networks have been used to learn representations of complex dynamical
systems (Fragkiadaki et al., 2015) and Pontryagin’s principle was leveraged in the optimization of
control tasks based on such models (Jin et al., 2020; Böttcher et al., 2022). However, these methods
only consider the setting of closed-loop control. The combination of an exact forward pass with an
approximate backward pass, which our methods are based on, has also been explored in different
settings in the deep learning literature, such as spiking (Lee et al., 2016) or physical (Wright et al.,
2022) neural networks, or networks that include nondifferentiable procedures, for example used for
rendering (Niemeyer et al., 2020) or combinatorial optimization (Vlastelica et al., 2020). The analysis
of Appendix E that we developed for our convergence result (Theorem 4) could also be relevant for
these applications, as the fundamental structure (backpropagation with an accurate forward pass and
an inaccurate backward pass) is identical.

Appendix B. Algorithms

In this section, we provide detailed descriptions of the three open-loop RL algorithms presented in
the main text. The model-based algorithm of Section 3.2 is listed in Algorithm B.1, the model-free
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on-trajectory method of Section 3.3 is listed in Algorithm B.2, and the off-trajectory method of
Section 3.4 is listed in Algorithm B.3. The hyperparameters we use in these algorithms are discussed
in Appendix I.

Algorithm B.1: Model-based open-loop RL

Input: Differentiable model f̃ : X × U → X , optimization steps N ∈ N, step size η > 0
1 Initialize u0:T−1 (initial action sequence)
2 for k = 1, 2, . . . , N do

// Forward pass
3 x0:T ← rollout(u0:T−1)

// Backward pass

4 λ̃T ← ∇rT (xT )
5 for t = T − 1, T − 2, . . . , 0 do
6 λ̃t ← ∇xr(xt, ut) +∇xf̃(xt, ut)λ̃t+1

7 gt ← ∇ur(xt, ut) +∇uf̃(xt, ut)λ̃t+1

8 ut ← ut + ηgt // Gradient ascent

Algorithm B.2: Model-free on-trajectory open-loop RL
Input: Number of rollouts M ∈ N, noise scale σ > 0, optimization steps N ∈ N,

step size η > 0
1 Initialize ū0:T−1 (initial action sequence)
2 for k = 1, 2, . . . , N do

// Forward passes
3 x̄0:T ← rollout(ū0:T−1)
4 for i = 1, 2, . . . ,M do
5 u

(i)
0:T−1 ∼ N (ū0:T−1, σI)

6 x
(i)
0:T ← rollout(u

(i)
0:T−1)

7 ∆u
(i)
0:T−1 ← u

(i)
0:T−1 − ū0:T−1

8 ∆x
(i)
0:T ← x

(i)
0:T − x̄0:T

// Backward pass

9 λ̃T ← ∇rT (x̄T )
10 for t = T − 1, T − 2, . . . , 0 do

// Jacobian estimation

11 At, Bt ← argminAt∈RD×D,Bt∈RK×D

∑M
i=1∥A⊤

t ∆x
(i)
t +B⊤

t ∆u
(i)
t −∆x

(i)
t+1∥2

// Pontryagin update

12 λ̃t ← ∇xr(x̄t, ūt) +Atλ̃t+1

13 gt ← ∇ur(x̄t, ūt) +Btλ̃t+1

14 ūt ← ūt + ηgt // Gradient ascent
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Algorithm B.3: Model-free off-trajectory open-loop RL
Input: Forgetting factor α ∈ [0, 1], noise scale σ > 0, initial precision q0 > 0,

optimization steps N ∈ N, step size η > 0
1 Initialize ū0:T−1 (initial action sequence)
2 Initialize Ft ∈ RD×(D+K+1),∀t ∈ [T − 1]0
3 Qt ← q0I ∈ R(D+K+1)×(D+K+1), ∀t ∈ [T − 1]0
4 for k = 1, 2, . . . , N do

// Forward pass
5 u0:T−1 ∼ N (ū0:T−1, σI)
6 x0:T ← rollout(u0:T−1)

// Backward pass

7 λ̃T ← ∇rT (xT )
8 for t = T − 1, T − 2, . . . , 0 do

// Jacobian estimation

9 zt ← [x⊤t u⊤t 1]⊤

10 Qt ← αQt + (1− α)q0I + ztz
⊤
t

11 Ft ← Ft +Q−1
t zt(xt+1 − Ftzt)

⊤

12 [A⊤
t B⊤

t ct]← Ft

// Pontryagin update

13 λ̃t ← ∇xr(xt, ut) +Atλ̃t+1

14 gt ← ∇ur(xt, ut) +Btλ̃t+1

15 ūt ← ūt + ηgt // Gradient ascent

Appendix C. Derivation of Pontryagin’s principle
In this section, we will derive Pontryagin’s principle, (1) to (3), using the method of Lagrange
multipliers. In the following we view the objective J as a function of states and actions, that is

J(x0:T , u0:T−1)
.
=

T−1∑
t=0

r(xt, ut) + rT (xT ).

We maximize J with respect to x0:T and u0:T−1 subject to the constraint that xt+1 = f(xt, ut) for
all t = [T − 1]0. The corresponding Lagrangian is

L(x0:T , u0:T−1, λ1:T )
.
=

T−1∑
t=0

{r(xt, ut) + λ⊤
t+1(f(xt, ut)− xt+1)}+ rT (xT ),

where the constraints are included through the multipliers λ1:T . The costate equations are then
obtained by setting the partial derivatives of the Lagrangian with respect to x0:T to zero:

∇xtL = ∇xr(xt, ut) +∇xf(xt, ut)λt+1 − λt
.
= 0

=⇒ λt = ∇xr(xt, ut) +∇xf(xt, ut)λt+1
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∇xTL = ∇rT (xT )− λT
.
= 0

=⇒ λT = ∇rT (xT ).

Setting the partial derivatives of the Lagrangian with respect to λ1:T to zero yields the dynamics
equations, and the partial derivatives of the Lagrangian with respect to u0:T−1 are

∇utL = ∇ur(xt, ut) +∇uf(xt, ut)λt+1,

which is the same expression for the gradient of the objective as in (1).

Appendix D. Pontryagin’s principle from backpropagation
In Section 3.2, we mention that an application of the backpropagation algorithm (i.e., a repeated
application of the chain rule) to the objective J leads naturally to Pontryagin’s principle. We have

J(u0:T−1) =
T−1∑
t=0

r(xt, ut) + rT (xT )

= r(x0, u0) + r{f(x0, u0)︸ ︷︷ ︸
x1

, u1}+ r{f(f(x0, u0), u1)︸ ︷︷ ︸
x2

, u2}+ · · ·

+ r{f(f(· · · f(f(x0, u0), u1) · · · ), uT−2)︸ ︷︷ ︸
xT−1

, uT−1}

+ rT {f(f(· · · f(f(x0, u0), u1) · · · ), uT−1)︸ ︷︷ ︸
xT

}.

The chain rule states that for g : Rn → Rk, h : Rk → Rm and x ∈ Rn,

∇(h ◦ g)(x) = ∇g(x)∇h{g(x)},

where ∇g : Rn → Rn×k, ∇h : Rk → Rk×m and ∇(h ◦ g) : Rn → Rn×m. From this, we can
compute the gradient of the objective function with respect to the action ut at time t ∈ [T − 1]0 as

∇utJ(u0:T−1) = ∇ur(xt, ut) +∇uf(xt, ut)∇xr(xt+1, ut+1)

+∇uf(xt, ut)∇xf(xt+1, ut+1)∇xr(xt+2, ut+2)

+ · · ·
+∇uf(xt, ut)∇xf(xt+1, ut+1) · · · ∇xf(xT−2, uT−2)∇xr(xT−1, uT−1)

+∇uf(xt, ut)∇xf(xt+1, ut+1) · · · ∇xf(xT−1, uT−1)∇rT (xT )
= ∇ur(xt, ut) +∇uf(xt, ut)λt+1,

where we have introduced the shorthand λt+1 for the blue part. This is the same expression for the
gradient as in (1), and it can easily be seen that this definition of λt satisfies the costate equations (2)
and (3).

Appendix E. Proof of Theorem 4
In this section, we prove Theorem 4, our convergence result of Algorithm 1. The main part of
the proof is contained in the proof of Theorem 7, which provides a lower bound for the inner
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product between the approximate and true gradients as well as an upper bound for the norm of the
approximate gradients. Intuitively, this theorem turns Assumption 2, which is a statement about the
error of the approximate Jacobians, into a statement about the error of the approximate gradient.
We then show that Theorem 4 follows by making use of the L-smoothness (Assumption 3) of the
objective function. This latter part is a standard result in the analysis of stochastic gradient methods
(e.g., Bottou et al., 2018).

Before coming to the main result, we introduce the following shorthand notation. Given a fixed
trajectory (u0:T−1, x0:T ), we define

∇Jt
.
= ∇uftλt+1, εt

.
= At −∇xft, ε′t

.
= Bt −∇uft and δt+1

.
= λ̃t+1 − λt+1

for all times t ∈ [T − 1]0. By (1) and Assumption 1, the first quantity defines the true gradient and
the approximate gradient is given by gt = Btλ̃t+1. We also state two small lemmas, which we will
use routinely in the following proof.

Lemma 5 Let x, y ∈ Rn for n ∈ N and α ∈ R such that ∥x∥ ≤ α∥y∥. Then, |x⊤y| ≤ α∥y∥2.

Proof ∥x∥ ≤ α∥y∥ =⇒ ∥x∥∥y∥ ≤ α∥y∥2 =⇒ |x⊤y| ≤ α∥y∥2 (by Cauchy-Schwarz).

Lemma 6 Let A,B ∈ Rm×n for some m,n ∈ N and x, y ∈ Rn such that σ̄(A)∥x∥ ≤
¯
σ(B)∥y∥.

Then, ∥Ax∥ ≤ ∥By∥.

Proof This is a simple corollary of the Courant-Fischer (min-max) theorem. The min-max theorem
states that, for a symmetric matrix C ∈ Rn×n, the minimum and maximum eigenvalues

¯
λ(C) and

λ̄(C) are characterized in the following way:

¯
λ(C) = min

z∈Rn

∥z∥=1

z⊤Cz and λ̄(C) = max
z∈Rn

∥z∥=1

z⊤Cz.

This can be extended to a characterization of the singular values σ̄(A) and
¯
σ(B) by relating them to

the eigenvalues of A⊤A and B⊤B, respectively:

σ̄(A) =
√
λ̄(A⊤A) = max

z∈Rn

∥z∥=1

√
z⊤A⊤Az = max

z∈Rn

∥z∥=1

∥Az∥ ≥ 1

∥x∥
∥Ax∥,

¯
σ(B) =

√
¯
λ(B⊤B) = min

z∈Rn

∥z∥=1

√
z⊤B⊤Bz = min

z∈Rn

∥z∥=1

∥Bz∥ ≤ 1

∥y∥
∥By∥.

Combining these inequalities, we get:

∥Ax∥ ≤ σ̄(A)∥x∥ ≤
¯
σ(B)∥y∥ ≤ ∥By∥.

Theorem 7 Suppose Assumptions 1 and 2 hold with γ and ζ and define µ
.
= 1− γ − ζ − γζ and

ν
.
= 1 + γ + ζ + γζ. Then,

g⊤t ∇Jt ≥ µ∥∇Jt∥2 and ∥gt∥ ≤ ν∥∇Jt∥,

for all t ∈ [T − 1]0.
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Proof Let t ∈ [T − 1]0 be fixed. Decomposing the left-hand side of the first inequality, we get
g⊤t ∇Jt = λ̃⊤

t+1B
⊤
t ∇uftλt+1

= (λt+1 + δt+1)
⊤(∇uft + ε′t)

⊤∇uftλt+1

= ∥∇Jt∥2 + λ⊤
t+1ε

′⊤
t ∇uftλt+1︸ ︷︷ ︸

a

+ δ⊤t+1∇uf
⊤
t ∇uftλt+1︸ ︷︷ ︸
b

+ δ⊤t+1ε
′⊤
t ∇uftλt+1︸ ︷︷ ︸

c

≥ ∥∇Jt∥2 − |a| − |b| − |c|.

We will now show that

|a| ≤ ζ∥∇Jt∥2 and |b| ≤ γ∥∇Jt∥2 and |c| ≤ γζ∥∇Jt∥2,

which, when taken together, will give us

g⊤t ∇Jt ≥ (1− γ − ζ − γζ)∥∇Jt∥2 = µ∥∇Jt∥2.

We first derive the bound on |a|:

σ̄(ε′t) ≤ ζ
¯
σ(∇uft) (Assumption 2b)

=⇒ ∥ε′tλt+1∥ ≤ ζ∥∇uftλt+1∥ (Theorem 6) (8)

=⇒ |λ⊤
t+1ε

′⊤
t ∇uftλt+1︸ ︷︷ ︸

a

| ≤ ζ∥∇Jt∥2. (Theorem 5)

The expression for b involves δt+1, which is the error of the approximate costate λ̃t+1. This error
comes from the cumulative error build-up due to εt+1:T−1, the errors of the approximate Jacobians
used in the backward pass. To bound |b| we therefore first need to bound this error build-up. To this
end, we now show that for all s ∈ [T − t],

∥δt+s∥ ≤
γ

3s−1
κ−1(∇uft)

s−1∏
i=1

κ−1(∇xft+i)∥λt+s∥, (9)

where we write the inverse condition number of a matrix A as κ−1(A)
.
=

¯
σ(A)/σ̄(A). To prove this

bound, we perform a backward induction on s. First, consider s = T − t. The right-hand side of (9)
is clearly nonnegative. The left-hand side is

∥δT ∥ = ∥λ̃T − λT ∥ = 0,

as λ̃T = λT . Thus, the inequality holds for s = T − t. We now complete the induction by showing
that it holds for any s ∈ [T − t− 1], assuming that it holds for s+ 1. We start by decomposing δt+s:

δt+s = λ̃t+s − λt+s

= At+sλ̃t+s+1 −∇xft+sλt+s+1

= (∇xft+s + εt+s)(λt+s+1 + δt+s+1)−∇xft+sλt+s+1

= εt+sλt+s+1 +∇xft+sδt+s+1 + εt+sδt+s+1.
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Now, we can bound ∥δt+s∥ by bounding these individual contributions:

∥δt+s∥ ≤ ∥εt+sλt+s+1︸ ︷︷ ︸
a′

∥+ ∥∇xft+sδt+s+1︸ ︷︷ ︸
b′

∥+ ∥εt+sδt+s+1︸ ︷︷ ︸
c′

∥.

We start with ∥a′∥:

σ̄(εt+s) ≤
γ

3s
κ−1(∇uft)

s−1∏
i=1

κ−1(∇xft+i)
¯
σ(∇xft+s) (Assumption 2a)

=⇒ ∥εt+sλt+s+1︸ ︷︷ ︸
a′

∥ ≤ γ

3s
κ−1(∇uft)

s−1∏
i=1

κ−1(∇xft+i)∥∇xft+sλt+s+1︸ ︷︷ ︸
λt+s

∥. (Theorem 6)

Now, ∥b′∥:

∥δt+s+1∥ ≤
γ

3s
κ−1(∇uft)

s∏
i=1

κ−1(∇xft+i)∥λt+s+1∥

(Induction hypothesis)

⇐⇒ σ̄(∇xft+s)∥δt+s+1∥ ≤
γ

3s
κ−1(∇uft)

s−1∏
i=1

κ−1(∇xft+i)
¯
σ(∇xft+s)∥λt+s+1∥

(Definition of κ−1)

=⇒ ∥∇xft+sδt+s+1︸ ︷︷ ︸
b′

∥ ≤ γ

3s
κ−1(∇uft)

s−1∏
i=1

κ−1(∇xft+i)∥∇xft+sλt+s+1︸ ︷︷ ︸
λt+s

∥. (Theorem 6)

And finally, ∥c′∥:

σ̄(εt+s) ≤
¯
σ(∇xft+s) ≤ σ̄(∇xft+s) (10)

=⇒ σ̄(εt+s)∥δt+s+1∥ ≤
γ

3s
κ−1(∇uft)

s∏
i=1

κ−1(∇xft+i)σ̄(∇xft+s)∥λt+s+1∥

(Induction hypothesis)

⇐⇒ σ̄(εt+s)∥δt+s+1∥ ≤
γ

3s
κ−1(∇uft)

s−1∏
i=1

κ−1(∇xft+i)
¯
σ(∇xft+s)∥λt+s+1∥

(Definition of κ−1)

=⇒ ∥εt+sδt+s+1︸ ︷︷ ︸
c′

∥ ≤ γ

3s
κ−1(∇uft)

s−1∏
i=1

κ−1(∇xft+i)∥∇xft+sλt+s+1︸ ︷︷ ︸
λt+s

∥. (Theorem 6)

Here, (10) follows from Assumption 2a by noting that that the constant before
¯
σ(∇xft+s) on the

right-hand side is not greater than 1. We can now put all three bounds together to give us (9):

∥δt+s∥ ≤ ∥a′∥+ ∥b′∥+ ∥c′∥ ≤ 3 · γ
3s

κ−1(∇uft)

s−1∏
i=1

κ−1(∇xft+i)∥λt+s∥.
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Equipped with a bound on δt+s, we are ready to bound |b| and |c|. Starting with |b|, we have:

∥δt+1∥ ≤ γκ−1(∇uft)∥λt+1∥ ((9) for s = 1)

⇐⇒ σ̄(∇uft)∥δt+1∥ ≤ γ
¯
σ(∇uft)∥λt+1∥ (Definition of κ−1)

=⇒ ∥∇uftδt+1∥ ≤ γ∥∇uftλt+1∥ (Theorem 6) (11)

=⇒ | δ⊤t+1∇uf
⊤
t ∇uftλt+1︸ ︷︷ ︸
b

| ≤ γ∥∇Jt∥2. (Theorem 5)

And finally, we can bound |c|:

σ̄(ε′t) ≤ ζ
¯
σ(∇uft) ≤ ζσ̄(∇uft) (Assumption 2b)

=⇒ σ̄(ε′t)κ
−1(∇uft)∥λt+1∥ ≤ ζ

¯
σ(∇uft)∥λt+1∥ (Definition of κ−1)

=⇒ σ̄(ε′t)∥δt+1∥ ≤ γζ
¯
σ(∇uft)∥λt+1∥ ((9) for s = 1)

=⇒ ∥ε′tδt+1∥ ≤ γζ∥∇uftλt+1∥ (Theorem 6) (12)

=⇒ | δ⊤t+1ε
′⊤
t ∇uftλt+1︸ ︷︷ ︸

c

| ≤ γζ∥∇Jt∥2. (Theorem 5)

This concludes the proof of the first inequality showing that

g⊤t ∇Jt ≥ µ∥∇Jt∥2.

The second inequality,
∥gt∥ ≤ ν∥∇Jt∥,

follows easily from the work we have already done. To show this, we start by decomposing gt:

gt = Btλ̃t+1

= (∇uft + ε′t)(λt+1 + δt+1)

= ∇Jt +∇uftδt+1 + ε′tλt+1 + ε′tδt+1.

To bound the norm of gt, we again make use of the triangle inequality:

∥gt∥ ≤ ∥∇Jt∥+ ∥∇uftδt+1∥+ ∥ε′tλt+1∥+ ∥ε′tδt+1∥
≤ (1 + γ + ζ + γζ)∥∇Jt∥
= ν∥∇Jt∥,

where we have used (8), (11) and (12).

Proof of Theorem 4. Let N ∈ N and t ∈ [T − 1]0 be fixed. In Algorithm B.1, the iterates are
computed, for all k ∈ [N − 1]0, as

u
(k+1)
t = u

(k)
t + ηg

(k)
t ,

where g
(k)
t is the approximate gradient at iteration k. We denote the true gradient at iteration k by

∇J (k)
t . From the L-smoothness of the objective function (Assumption 3), it follows that

J(u
(k+1)
0:T−1) ≥ J(u

(k)
0:T−1) +∇utJ(u

(k)
0:T−1)

⊤(u
(k+1)
t − u

(k)
t )− L

2
∥u(k+1)

t − u
(k)
t ∥2
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= J(u
(k)
0:T−1) +∇J

(k)
t

⊤
(ηg

(k)
t )− L

2
∥ηg(k)t ∥2

≥ J(u
(k)
0:T−1) + ηµ∥∇J (k)

t ∥2 −
η2Lν2

2
∥∇J (k)

t ∥2 (Theorem 7)

= J(u
(k)
0:T−1) + η

(
µ− ηLν2

2︸ ︷︷ ︸
α

)
∥∇J (k)

t ∥2.

Theorem 4 demands that η > 0 is set small enough such that α > 0, which is possible because
0 < µ < ν and L > 0. Thus, we get

ηα∥∇J (k)
t ∥2 ≤ J(u

(k+1)
0:T−1)− J(u

(k)
0:T−1)

=⇒ 1

N

N−1∑
k=0

∥∇J (k)
t ∥2 ≤

1

αηN

N−1∑
k=0

{
J(u

(k+1)
0:T−1)− J(u

(k)
0:T−1)

}
=

1

αηN

{
J(u

(N)
0:T−1)− J(u

(0)
0:T−1)

}
≤

J⋆ − J(u
(0)
0:T−1)

αηN
,

where J⋆ .
= supu∈UT J(u) is the optimal value of the initial state.

Appendix F. Inverted pendulum swing-up task
We give a brief description of the inverted pendulum system on which we evaluate our algorithms
in Section 4.1. The setup is shown in Fig. 3. The state at time t is xt = (ℓ, ℓ̇, θ, θ̇)t ∈ R4, where
ℓ is the position of the cart on the bar and θ is the (signed) pendulum angle. The action ut is the
horizontal force F (in units of 50N) applied to the cart at time t. Episodes are of length T = 100, the
running reward r(x, u) = −0.001u2 penalizes large forces, and the terminal reward rT (x) = −∥x∥1
defines the goal state to be at rest in the upright position. The system has five parameters: the mass
of the cart (m1 = 1kg), the mass of the pendulum tip (m2 = 0.1 kg), the length of the pendulum
(m3 = 0.5m), the friction coefficient for linear motion (m4 = 0.01N sm−1), and the friction
coefficient for rotational motion (m5 = 0.01Nms rad−1). These are the model parameters that are
randomly sampled to test the robustness of our model-based algorithm in Section 4.1. We say that
the swing-up task is solved if Jmax > −0.03. This threshold was determined empirically. If the
algorithm or the model is randomized, then [Jmax > −0.03] is a Bernoulli random variable whose
mean, which we call the solve rate, depends on the quality of the learning algorithm.

Appendix G. Further experiments
In this section, we repeat the MuJoCo experiments of Section 4.2 with longer time-horizons T . The
results are shown in Fig. 8. Our algorithms are sensitive to the horizon T due to the backpropagation
of the costates. At each propagation step, the approximation errors of the Jacobians amplify the
errors of the costates. For this reason, Theorem 4 demands (through Assumption 2) more accurate Ja-
cobians at later time steps. Thus, for large T , our convergence result requires more accurate Jacobian
estimates. However, in Fig. 8, we see that Algorithm B.3 is able to cope with longer horizons for the
two MuJoCo environments. The reason for this discrepancy between our theoretical and empirical

24



A PONTRYAGIN PERSPECTIVE ON REINFORCEMENT LEARNING

0 5000 10000 15000 20000
Episodes

100

200

300

400

500

A
ve

ra
ge

re
tu

rn
J

Ant-v4

0 5000 10000 15000 20000
Episodes

0

100

200

300

400

HalfCheetah-v4

T = 100
T = 200
T = 300

Figure 8: Learning curves of our off-trajectory algorithm. All experiments were repeated with 20
random seeds, and we show 95%-bootstrap confidence intervals for the average return.

result is that Theorem 4 does not consider the stability of the system under consideration. The two
MuJoCo systems, Ant-v4 and HalfCheetah-v4, are stable along the trajectories encountered
during training, which prevents an exponential build-up of error in the costate propagation.

Appendix H. Baselines
We compare our algorithms against two baselines: the finite-difference approach discussed at the end
of Section 3.3 and the gradient-free cross-entropy method (CEM; Rubinstein, 1999). These methods
are listed in Algorithms H.1 and H.2. In both algorithms, we perform M ∈ N rollouts of perturbed
action sequences {ui ∼ N (ū, σI)}Mi=1. Here, ū is the current action sequence and σ > 0 is a noise
scale parameter. In CEM, we then construct the elite set S of the L < M perturbed action sequences
with the highest returns, where L ∈ N is a hyperparameter. Finally, the current action sequence ū is
updated to be the mean of the elite sequences, such that ū← 1

L

∑
u∈S u.

While the gradient-free nature of this method can make it more efficient than the finite-difference
approach, it still suffers from the same fundamental deficiency: it ignores the Markovian structure
of the RL problem and treats the objective function J as a black box. CEM is commonly used
in model-based closed-loop reinforcement learning for planning. In this setting, the rollouts are
hallucinated using the approximate model. Instead of executing the complete open-loop trajectory,
the model-predictive control framework is typically employed. The planning procedure is repeated
after each step in the real environment with the executed action being the first item in the planned
action sequence. Thus, this setting is very different from our open-loop RL objective. For this reason,
we slightly modify the CEM algorithm to better fit our requirements. In model-based RL, typically
both mean ū and standard variation σ are adapted in CEM (Hafner et al., 2019; Pinneri et al., 2021).
In our experiments, this approach led to very fast convergence (σ → 0) to suboptimal trajectories.
We thus only fit the mean and keep the noise scale fixed, which we empirically observed to give
much better results.

Appendix I. Hyperparameters
Unless stated otherwise, we used the hyperparameters listed in Table 1 in the inverted penulum
experiments of Section 4.1, and those listed in Table 2 in the MuJoCo experiments of Section 4.2
and Appendix G. In each experiment, all actions in the initial action trajectory u

(0)
0:T−1 are sampled

from a zero-mean Gaussian distribution with standard deviation 0.01. We use the Adam optimizer
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Algorithm H.1: Finite-difference method
Input: Number of rollouts M ∈ N, noise scale σ > 0, step size η > 0

1 Initialize ū0:T−1 (initial action sequence)
2 ū← vec(ū0:T−1) ∈ RTK

3 for k = 1, 2, . . . , N do
// Forward passes

4 x̄0:T ← rollout(ū0:T−1)

5 J̄ ←
∑T−1

t=0 r(x̄t, ūt) + rT (x̄T )
6 for i = 1, 2, . . . ,M do
7 u0:T−1 ∼ N (ū0:T−1, σI)
8 x0:T ← rollout(u0:T−1)
9 ui ← vec(u0:T−1) ∈ RTK

10 Ji ←
∑T−1

t=0 r(xt, ut) + rT (xT )

// Gradient estimation

11 g ← argming∈RTK

∑M
i=1{Ji − J̄ − g⊤(ui − ū)}2

// Gradient ascent
12 ū← ū+ ηg
13 ū0:T−1 ← reshape(ū) ∈ RT×K

Algorithm H.2: Cross-entropy method
Input: Number of rollouts M ∈ N, noise scale σ > 0, size of elite set L ∈ N

1 Initialize ū0:T−1 (initial action sequence)
2 ū← vec(ū0:T−1) ∈ RTK

3 for k = 1, 2, . . . , N do
// Forward passes

4 for i = 1, 2, . . . ,M do
5 u0:T−1 ∼ N (ū0:T−1, σI)
6 x0:T ← rollout(u0:T−1)
7 ui ← vec(u0:T−1) ∈ RTK

8 Ji ←
∑T−1

t=0 r(xt, ut) + rT (xT )

// Elite set computation
9 S ← arg partitionL{(−Ji)Mi=1}1:L

// Action sequence update
10 ū← 1

L

∑
i∈S ui

11 ū0:T−1 ← reshape(ū) ∈ RT×K

(Kingma and Ba, 2014) both for training the MLP model and for performing the gradient ascent steps
in Algorithms B.1 to B.3 and H.1. We did not optimize the hyperparameters of soft actor-critic (SAC),
but kept the default values suggested by Haarnoja et al. (2018a), as these are already optimized for
the MuJoCo environments. The entropy coefficient of the SAC algorithm is tuned automatically
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Table 1: Pendulum experiments hyperparameters

Parameter Value

Number of optimization steps N 50000
Step size η 0.001
Noise scale σ 0.001
Number of perturbed rollouts M 10
Forgetting factor α 0.8
Initial precision q0 0.001
Cross-entropy method: M5 20
Finite-difference method: M5 20
Finite-difference method: σ5 0.0001
MLP model: hidden layers [16, 16]
MLP model: training rollouts 1000
MLP model training: epochs 10
MLP model training: batch size 100
MLP model training: step size 0.002
MLP model training: weight decay 0.001

Table 2: MuJoCo experiments hyperparameters

Parameter Value

Number of optimization steps N 20000
Step size η 0.0001
Noise scale σ 0.03
Initial precision q0 0.0001

Forgetting factor α
HalfCheetah-v4, T = 100 0.9
HalfCheetah-v4, T = 200 0.8
HalfCheetah-v4, T = 300 0.8
Ant-v4, T = 100 0.95
Ant-v4, T = 200 0.9
Ant-v4, T = 300 0.85

according to the procedure described by Haarnoja et al. (2018b). In our experiments, we make use of
the Stable-Baselines3 (Raffin et al., 2021) implementation of SAC.

For our off-trajectory method, we found it worthwile to tune the forgetting factor α to the specific
task at hand. Large α means that data is retained for longer, which both makes the algorithm more
sample efficient (i.e., faster convergece) and the Jacobian estimates more biased (i.e., convergence to
a worse solution). In Fig. 9, we show this trade-off in the learning curves for the MuJoCo tasks (with
the horizon T = 200). We found that the performance is much less senstitive to the choice of noise
scale σ and initial precision q0 than to the choice of the forgetting factor α.
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Figure 9: Analysis of the influence of the forgetting factor α on the performance of the off-trajectory
method (Algorithm B.3) in the MuJoCo environments (T = 200). All experiments were repeated
with 20 random seeds, and we show 95%-bootstrap confidence intervals for the average return.

5. This value was chosen on the basis of the experiment presented in Fig. 5.
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