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We introduce open-loop
reinforcement learning by
replacing Bellman with

Pontryagin
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1▶ Some behavior is best represented as a sequence of actions, not as a policy
▶ Open-loop methods are commonplace in control, but largely ignored in RL
▶ In applications where sensors are not viable, an open-loop solution is required
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▶ Closed-loop control: learn a policy 𝜋 that maximizes the sum of rewards

𝜋⋆ = argmax
π∶ 𝒳→Δ𝒰

𝔼π [
T−1
∑
t=0

𝑟(𝑥t, 𝑢t) + 𝑟T(𝑥T)]

▶ Open-loop control: learn a sequence of actions instead of a policy

𝑢⋆
0∶T−1 = argmax

u0∶T−1∈𝒰T

T−1
∑
t=0

𝑟(𝑥t, 𝑢t) + 𝑟T(𝑥T)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

J(u0∶T−1)

s.t. 𝑥t+1 = 𝑓(𝑥t, 𝑢t)

▶ The open-loop problem is often much easier (optimize over 𝒰T instead of Δ𝒳
𝒰)

▶ We can optimize 𝐽 with gradient ascent and Pontryagin’s principle

Pontryagin’s principle for computing ∇𝐽

1. Forward pass: 𝑥t+1 = 𝑓(𝑥t, 𝑢t), where 𝑥0 is given
2. Backward pass: 𝜆t = ∇x𝑟(𝑥t, 𝑢t) + ∇x𝑓(𝑥t, 𝑢t)𝜆t+1, where 𝜆T = ∇𝑟T(𝑥T)
3.Gradient: ∇ut

𝐽(𝑢0∶T−1) = ∇u𝑟(𝑥t, 𝑢t) + ∇u𝑓(𝑥t, 𝑢t)𝜆t+1

Open-loop reinforcement learning

▶ In RL, we don’t know the dynamics 𝑓, but Pontryagin requires ∇x𝑓t and ∇u𝑓t

Theorem (informal)

Replace ∇x𝑓t and ∇u𝑓t in Pontryagin’s equations by estimates 𝐴t and 𝐵t with
sufficiently small errors ‖𝐴t−∇x𝑓t‖ and ‖𝐵t−∇u𝑓t‖ to get an approximate gradi-
ent 𝑔 ≃ ∇𝐽(𝑢0∶T−1). Then, gradient ascent on 𝑔 produces iterates 𝑢

(0)
0∶T−1, … , 𝑢(N−1)

0∶T−1
that satify, for some learning rate 𝜂 and constant 𝛼 > 0,

1
𝑁

N−1
∑
k=0

‖∇ut
𝐽(𝑢(k)

0∶T−1)‖2 ≤
𝐽⋆ − 𝐽(𝑢(0)

0∶T−1)
𝛼𝜂𝑁

.

Model-based open-loop RL

▶ We can learn a dynamics model ̃𝑓 ≃ 𝑓 and set 𝐴t ≐ ∇x
̃𝑓t and 𝐵t ≐ ∇u

̃𝑓t
▶ This method is remarkably robust against modeling errors
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Model-free open-loop RL

▶ The Jacobians ∇x𝑓t and ∇u𝑓t measure how 𝑥t+1 changes if (𝑥t, 𝑢t) is perturbed
▶ We can estimate them directly from 𝑀 rollouts with perturbed actions:

argmin
[A⊤

t B⊤
t ct]∈ℝD×(D+K+1)

M
∑
i=1

‖𝐴⊤
t 𝑥

(i)
t + 𝐵⊤

t 𝑢
(i)
t + 𝑐t − 𝑥(i)t+1‖2

(xt, ut)

xt+1

ft
.
= f(xt, ut), ∆x

.
= x− xt, ∆u

.
= u− ut

f(x, u)

ft +∇xf>t ∆x+∇uf>t ∆u
A>t x+ B>t u+ ct (least squares fit)
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▶ This an on-trajectory method: data is discarded after each update

Off-trajectory open-loop RL
▶ If subsequent trajectories are similar, we can reuse previous Jacobian estimates
▶ We can solve the regression problem with recursive least squares:

𝑄(k)
t = 𝛼𝑄(k−1)

t + (1 − 𝛼)𝑞0𝐼 + 𝑧(k)t {𝑧(k)t }⊤

𝐹(k)t = 𝐹(k−1)
t + {𝑄(k)

t }−1𝑧(k)t {𝑥(k)t+1 − 𝐹(k−1)
t 𝑧(k)t }⊤,

where 𝐹t ≐ [𝐴⊤
t 𝐵⊤

t 𝑐t], 𝑧t ≐ (𝑥t, 𝑢t, 1) ∈ ℝD+K+1, and 𝑄(0)
t ≐ 𝑞0𝐼

▶ Here, 𝛼 is a forgetting factor: recent transitions are given more weight

Experiments

▶ Our method works in high-dimensional, stochastic, non-smooth environments
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Open-loop reinforcement learning is an effective strategy to
solve challenging tasks without function approximation!
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https://lds.is.mpg.de/
https://onnoeberhard.com/pontryagin

