
LATEX TikZposter

A PONTRYAGIN PERSPECTIVE ON REINFORCEMENT LEARNING
Onno Eberhard12 Claire Vernade2 Michael Muehlebach1
1Max Planck Institute for Intelligent Systems 2University of Tübingen

A PONTRYAGIN PERSPECTIVE ON REINFORCEMENT LEARNING
Onno Eberhard12 Claire Vernade2 Michael Muehlebach1
1Max Planck Institute for Intelligent Systems 2University of Tübingen

ICML 2024 Workshop on Foundations of Reinforcement Learning and Control ⋅ Vienna, Austria lds.is.mpg.de

We introduce open-loop
reinforcement learning by
replacing Bellman with

Pontryagin

Motivation

θ

ℓ

F

State: x = (ℓ, _ℓ, θ, _θ)

Action: u = F

Tip trajectory
0 100Time t

1▶ Some behavior is best represented as a sequence of actions, not as a policy
▶ Open-loop methods are commonplace in control, but largely ignored in RL
▶ In applications where sensors are not viable, an open-loop solution is required

Open-loop control

𝜋(⋅ ∣ 𝑥t)

Closed-loop control

𝑓(𝑥t, 𝑢t)

𝑢t

𝑥t+1𝑥t

𝑥t 𝑢0∶T−1

Open-loop control

𝑓(𝑥t, 𝑢t)

𝑢t

𝑥t+1𝑥t

▶ Closed-loop control: learn a policy 𝜋 that maximizes the sum of rewards

𝜋⋆ = argmax
π∶ 𝒳→Δ𝒰

𝔼π [
T−1
∑
t=0

𝑟(𝑥t, 𝑢t) + 𝑟T(𝑥T)]

▶ Open-loop control: learn a sequence of actions instead of a policy

𝑢⋆
0∶T−1 = argmax

u0∶T−1∈𝒰T

T−1
∑
t=0

𝑟(𝑥t, 𝑢t) + 𝑟T(𝑥T)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

J(u0∶T−1)

s.t. 𝑥t+1 = 𝑓(𝑥t, 𝑢t)

▶ The open-loop problem is often much easier (optimize over 𝒰T instead of Δ𝒳
𝒰)

▶ We can optimize 𝐽 with gradient ascent and Pontryagin’s principle

Pontryagin’s principle for computing ∇𝐽

1. Forward pass: 𝑥t+1 = 𝑓(𝑥t, 𝑢t), where 𝑥0 is given
2. Backward pass: 𝜆t = ∇x𝑟(𝑥t, 𝑢t) + ∇x𝑓(𝑥t, 𝑢t)𝜆t+1, where 𝜆T = ∇𝑟T(𝑥T)
3.Gradient: ∇ut

𝐽(𝑢0∶T−1) = ∇u𝑟(𝑥t, 𝑢t) + ∇u𝑓(𝑥t, 𝑢t)𝜆t+1

Open-loop reinforcement learning

▶ In RL, we don’t know the dynamics 𝑓, but Pontryagin requires ∇x𝑓t and ∇u𝑓t

Theorem (informal)

Replace ∇x𝑓t and ∇u𝑓t in Pontryagin’s equations by estimates 𝐴t and 𝐵t with
sufficiently small errors ‖𝐴t−∇x𝑓t‖ and ‖𝐵t−∇u𝑓t‖ to get an approximate gradi-
ent 𝑔 ≃ ∇𝐽(𝑢0∶T−1). Then, gradient ascent on 𝑔 produces iterates 𝑢

(0)
0∶T−1, … , 𝑢(N−1)

0∶T−1
that satify, for some learning rate 𝜂 and constant 𝛼 > 0,

1
𝑁

N−1
∑
k=0

‖∇ut
𝐽(𝑢(k)

0∶T−1)‖2 ≤
𝐽⋆ − 𝐽(𝑢(0)

0∶T−1)
𝛼𝜂𝑁

.

Model-based open-loop RL

▶ We can learn a dynamics model ̃𝑓 ≃ 𝑓 and set 𝐴t ≐ ∇x
̃𝑓t and 𝐵t ≐ ∇u

̃𝑓t
▶ This method is remarkably robust against modeling errors

0 10−3 10−2 10−1 100 101

Model misspecification s

0.0

0.2

0.4

0.6

0.8

1.0

So
lv
e
ra
te

Experiment on invertend pendulum system

Model-based open-loop RL
Naive planning
MLP model open-loop RL
MLP model planning

Model-free open-loop RL

▶ The Jacobians ∇x𝑓t and ∇u𝑓t measure how 𝑥t+1 changes if (𝑥t, 𝑢t) is perturbed
▶ We can estimate them directly from 𝑀 rollouts with perturbed actions:

argmin
[A⊤

t B⊤
t ct]∈ℝD×(D+K+1)

M
∑
i=1

‖𝐴⊤
t 𝑥

(i)
t + 𝐵⊤

t 𝑢
(i)
t + 𝑐t − 𝑥(i)t+1‖2

(xt, ut)

xt+1

ft
.
= f(xt, ut), ∆x

.
= x− xt, ∆u

.
= u− ut

f(x, u)

ft +∇xf>t ∆x+∇uf>t ∆u
A>t x+ B>t u+ ct (least squares fit)

(xt, ut)k−3 (xt, ut)k−2 (xt, ut)k−1 (xt, ut)k

x
(k−3)
t+1

x
(k−2)
t+1

x
(k−1)
t+1 x

(k)
t+1

Reference transition
M perturbed transitions

f(x, u)

Transitions (subsequent trajectories)
Linearizations of f at transitions
Least squares fit (equal weighting)

▶ This an on-trajectory method: data is discarded after each update

Off-trajectory open-loop RL
▶ If subsequent trajectories are similar, we can reuse previous Jacobian estimates
▶ We can solve the regression problem with recursive least squares:

𝑄(k)
t = 𝛼𝑄(k−1)

t + (1 − 𝛼)𝑞0𝐼 + 𝑧(k)t {𝑧(k)t }⊤

𝐹(k)t = 𝐹(k−1)
t + {𝑄(k)

t }−1𝑧(k)t {𝑥(k)t+1 − 𝐹(k−1)
t 𝑧(k)t }⊤,

where 𝐹t ≐ [𝐴⊤
t 𝐵⊤

t 𝑐t], 𝑧t ≐ (𝑥t, 𝑢t, 1) ∈ ℝD+K+1, and 𝑄(0)
t ≐ 𝑞0𝐼

▶ Here, 𝛼 is a forgetting factor: recent transitions are given more weight

Experiments

▶ Our method works in high-dimensional, stochastic, non-smooth environments

103 104 105 106

Episodes

−3

−2

−1

0

A
ve
ra
ge

re
tu
rn
J

Inverted pendulum

0 5000 10000 15000 20000

Episodes

0

50

100

150

200

250

Ant-v4

0 5000 10000 15000 20000

Episodes

0

50

100

150

200

250

300
HalfCheetah-v4

On-trajectory open-loop RL
Off-trajectory open-loop RL

MLP model open-loop RL
Finite differences

CEM
Oracle

SAC (closed-loop)
SAC (open-loop)

Open-loop reinforcement learning is an effective strategy to
solve challenging tasks without function approximation!

Paper
Code
Video

https://lds.is.mpg.de/
https://onnoeberhard.com/pontryagin

