
A Pontryagin Perspective on Reinforcement Learning
or: “Open-Loop Reinforcement Learning”

Onno Eberhard12 ⋅ Claire Vernade2 ⋅ Michael Muehlebach1

1Max Planck Institute for Intelligent Systems 2University of Tübingen

April 19, 2024

Recap: reinforcement learning

𝜋(⋅ ∣ 𝑥t)

𝑓(𝑥t, 𝑢t)

𝑢t

𝑥t+1𝑥t

𝑥t

▶ Goal: learn a policy 𝜋 that maximizes the sum of rewards

𝜋⋆ = argmax
π∶𝒳→Δ𝒰

𝔼π [
T−1
∑
t=0

𝑟(𝑥t, 𝑢t) + 𝑟T(𝑥T)]

▶ Challenge: the system is unknown, only simulations possible
Onno Eberhard ⋅ A Pontryagin Perspective on RL 2

Example: inverted pendulum swing-up

θ

`

F

▶ State: 𝑥 = (ℓ, ̇ℓ, 𝜃, �̇�)
▶ Action: 𝑢 = 𝐹 (external force)
▶ Rewards: positive when upright and at rest, penalty for large force
▶ Classical benchmark in control theory

Onno Eberhard ⋅ A Pontryagin Perspective on RL 3

Open-loop control
▶ Pendulum is “easily” solvable with deep RL, e.g. soft actor-critic (SAC)

▶ SAC uses multiple neural networks, > 100, 000 parameters in total
▶ Overkill! Why not just learn the actions that are necessary?

𝜋(⋅ ∣ 𝑥t)

Closed-loop control

𝑓(𝑥t, 𝑢t)

𝑢t

𝑥t+1𝑥t

𝑥t 𝑢0∶T−1

Open-loop control

𝑓(𝑥t, 𝑢t)

𝑢t

𝑥t+1𝑥t

Onno Eberhard ⋅ A Pontryagin Perspective on RL 4

Pontryagin’s principle

▶ Open-loop optimal control:

𝑢⋆
0∶T−1 = argmax

u0∶T−1∈𝒰T

T−1
∑
t=0

𝑟(𝑥t, 𝑢t) + 𝑟T(𝑥T)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

J(u0∶T−1)

s.t. 𝑥t+1 = 𝑓(𝑥t, 𝑢t)

▶ Gradient-based optimization: how to compute ∇ut𝐽(𝑢0∶T−1)?

Pontryagin’s principle for computing ∇ut𝐽(𝑢0∶T−1)

1. Forward pass: 𝑥t+1 = 𝑓(𝑥t, 𝑢t), where 𝑥0 is given

2. Backward pass: 𝜆t = ∇x𝑟(𝑥t, 𝑢t) + ∇x𝑓(𝑥t, 𝑢t)𝜆t+1, where 𝜆T = ∇𝑟T(𝑥T)

3. Gradient: ∇ut𝐽(𝑢0∶T−1) = ∇u𝑟(𝑥t, 𝑢t) + ∇u𝑓(𝑥t, 𝑢t)𝜆t+1

Onno Eberhard ⋅ A Pontryagin Perspective on RL 5

Open-loop reinforcement learning

Theorem (informal)

Replace ∇x𝑓t and ∇u𝑓t in Pontryagin’s equations by estimates 𝐴t and 𝐵t with
sufficiently small errors ‖∇x𝑓t −𝐴t‖ and ‖∇u𝑓t − 𝐵t‖ to get an approximate gradient
𝑔 ≃ ∇𝐽(𝑢0∶T−1). Gradient ascent on 𝑔 produces iterates 𝑢(0)

0∶T−1, … , 𝑢(N−1)
0∶T−1 that satify

1
𝑁

N−1
∑
k=0

‖∇ut𝐽(𝑢
(k)
0∶T−1)‖2 ≤

𝐽⋆ − 𝐽(𝑢(0)
0∶T−1)

𝛼𝜂𝑁 .

How should we choose 𝐴t and 𝐵t?
▶ Model-based open-loop RL: given a model ̃𝑓, use 𝐴t ≐ ∇x ̃𝑓t and 𝐵t ≐ ∇u ̃𝑓t
▶ Model-free open-loop RL: estimate ∇x𝑓t and ∇u𝑓t directly

Onno Eberhard ⋅ A Pontryagin Perspective on RL 6

Model-free open-loop RL
▶ The Jacobians ∇x𝑓t and ∇u𝑓t measure how 𝑥t+1 changes if (𝑥t, 𝑢t) is perturbed

(xt, ut)

xt+1

ft
.
= f(xt, ut), ∆x

.
= x− xt, ∆u

.
= u− ut

f(x, u)

ft +∇xf>t ∆x+∇uf>t ∆u
A>t x+ B>t u+ ct (least squares fit)

Reference transition
Perturbed transitions

Onno Eberhard ⋅ A Pontryagin Perspective on RL 7

Off-trajectory open-loop RL
▶ Subsequent trajectories are similar, no need to throw all data away!
▶ Algorithm: recursive least squares with forgetting

x
(k)
t+1

(xt, ut)k−3 (xt, ut)k−2 (xt, ut)k−1 (xt, ut)k

x
(k−3)
t+1

x
(k−2)
t+1

x
(k−1)
t+1

f(x, u)

Transitions (subsequent trajectories)
Linearizations of f at transitions
Least squares fit (equal weighting)

Onno Eberhard ⋅ A Pontryagin Perspective on RL 8

Fin.

