A Pontryagin Perspective on Reinforcement Learning

or: "Open-Loop Reinforcement Learning"

Onno Eberhard¹² · Claire Vernade² · Michael Muehlebach¹

¹Max Planck Institute for Intelligent Systems ²University of Tübingen

April 19, 2024

Recap: reinforcement learning

• Goal: learn a policy π that maximizes the sum of rewards

$$\pi^{\star} = \operatorname*{arg\,max}_{\pi: \mathfrak{X} \to \Delta_{\mathfrak{U}}} \ \mathbb{E}_{\pi} \left[\sum_{t=0}^{T-1} r(x_t, u_t) + r_T(x_T) \right]$$

► Challenge: the system is unknown, only simulations possible

Example: inverted pendulum swing-up

- **•** State: $\mathbf{x} = (\boldsymbol{\ell}, \dot{\boldsymbol{\ell}}, \boldsymbol{\theta}, \dot{\boldsymbol{\theta}})$
- Action: u = F (external force)
- ▶ Rewards: positive when upright and at rest, penalty for large force
- Classical benchmark in control theory

Open-loop control

- ▶ Pendulum is "easily" solvable with deep RL, e.g. soft actor-critic (SAC)
 - ▶ SAC uses multiple neural networks, > 100,000 parameters in total
 - Overkill! Why not just learn the actions that are necessary?

Pontryagin's principle

► Open-loop optimal control:

$$u_{0:T-1}^{\star} = \underset{u_{0:T-1} \in \mathcal{U}^{T}}{\arg \max} \underbrace{\sum_{t=0}^{T-1} r(x_{t}, u_{t}) + r_{T}(x_{T})}_{J(u_{0:T-1})} \quad \text{s.t.} \quad x_{t+1} = f(x_{t}, u_{t})$$

• Gradient-based optimization: how to compute $\nabla_{u_t} J(u_{0:T-1})$?

Pontryagin's principle for computing $\nabla_{u_t} J(u_{0:T-1})$

- 1. Forward pass: $x_{t+1} = f(x_t, u_t)$, where x_0 is given
- 2. Backward pass: $\lambda_t = \nabla_x r(x_t, u_t) + \nabla_x f(x_t, u_t) \lambda_{t+1}$, where $\lambda_T = \nabla r_T(x_T)$
- 3. Gradient: $\nabla_{u_t} J(u_{0:T-1}) = \nabla_u r(x_t, u_t) + \nabla_u f(x_t, u_t)\lambda_{t+1}$

Open-loop reinforcement learning

Theorem (informal)

Replace $\nabla_x f_t$ and $\nabla_u f_t$ in Pontryagin's equations by estimates A_t and B_t with sufficiently small errors $\|\nabla_x f_t - A_t\|$ and $\|\nabla_u f_t - B_t\|$ to get an approximate gradient $g \simeq \nabla J(u_{0:T-1})$. Gradient ascent on g produces iterates $u_{0:T-1}^{(0)}, \dots, u_{0:T-1}^{(N-1)}$ that satify

$$\frac{1}{N}\sum_{k=0}^{N-1} \|\nabla_{u_t} J(u_{0:T-1}^{(k)})\|^2 \leqslant \frac{J^{\star} - J(u_{0:T-1}^{(0)})}{\alpha \eta N}.$$

How should we choose A_t and B_t ?

- ▶ Model-based open-loop RL: given a model \tilde{f} , use $A_t \doteq \nabla_x \tilde{f}_t$ and $B_t \doteq \nabla_u \tilde{f}_t$
- Model-free open-loop RL: estimate $\nabla_x f_t$ and $\nabla_u f_t$ directly

Model-free open-loop RL

▶ The Jacobians $\nabla_x f_t$ and $\nabla_u f_t$ measure how x_{t+1} changes if (x_t, u_t) is perturbed

Off-trajectory open-loop RL

- ▶ Subsequent trajectories are similar, no need to throw all data away!
- ► Algorithm: recursive least squares with forgetting

