

# Pink Noise Is All You Need: Colored Noise Exploration in Deep RL

universität innsbruck

ETHzürich

Onno Eberhard $^1$  Jakob Hollenstein $^{2,1}$  Cristina Pinneri $^{3,1}$  Georg Martius $^1$  $^1$ Max Planck Institute for Intelligent Systems  $^2$ Universität Innsbruck  $^3$ Max Planck ETH Center for Learning Systems

### **Abstract**

- Setting: Off-Policy reinforcement learning for continuous control
- Exploration is commonly performed by adding random perturbations to the actions or, equivalently, by sampling actions from a stochastic policy.
- This white noise exploration is often not sufficient to find high reward regions
- Strongly temporally correlated alternatives like Ornstein-Uhlenbeck (OU) noise, which try to tackle this issue, can inhibit learning when not necessary
- We examine the effectiveness of colored noise of intermediate temporal correlation
- Our results show that **pink noise** significantly outperforms white noise and OU noise across many tasks, and should be preferred as the default choice for action noise

# **Action Noise for Exploration**

In off-policy RL, action noise  $(\varepsilon_t \sim \mathcal{N}(0, I))$  may be added to a deterministic policy:  $a_t = \mu(s_t) + \sigma \varepsilon_t,$ 

or used for sampling from a stochastic policy  $\pi(a \mid s) = \mathcal{N}(a \mid \mu(s), \operatorname{diag}(\sigma^2(s)))$ :

$$a_t = \mu(s_t) + \sigma(s_t) \odot \varepsilon_t.$$

In both these cases, the noise signal  $\varepsilon_{1:T}$  has no temporal correlation and is called white noise. Some tasks require stronger exploration and are better served by temporally correlated noises like Ornstein-Uhlenbeck (OU) noise:

$$\varepsilon_{t+1} \sim (1 - \theta \Delta t)\varepsilon_t + \sigma \mathcal{N}(0, \Delta t).$$

For many tasks OU noise is too strongly correlated  $\rightarrow$  idea: intermediate correlation

### **Colored Noise**

A stochastic process is called **colored noise** with color parameter eta, if signals arepsilon(t)drawn from it have the property that  $|\hatarepsilon(f)|^2 \propto f^{-eta}$ , where  $\hatarepsilon(f)$  denotes the Fourier transform of  $\varepsilon(t)$  and  $|\hat{\varepsilon}(f)|^2$  is called the power spectral density.



Colored noise can be cheaply generated, and can

- interpolate between uncorrelated (white) and strongly correlated (red) noise,
- has already been shown to be effective in model-based reinforcement learning [1].

### Intuition



## Experiments

We test 10 noise types on 10 benchmark environments using MPO [2] and SAC [3].



Pink noise ( $\beta = 1$ ) significantly outperforms white noise (WN) and Ornstein-Uhlenbeck (OU) noise when performance is averaged across all benchmark environments. On 8/10 tasks, there is no significant difference between pink noise and the best noise type.



Can we be find a better strategy?

- Scheduling from  $\beta = 2$  to  $\beta = 0$
- ullet Adapting eta online to the task using a bandit algorithm

#### Results:

- Pink noise outperforms all alternatives significantly
- Pink noise performs on par with an oracle (empirically choosing best  $\beta$  for each task)

Pink noise is a **better default** than white noise and Ornstein-Uhlenbeck noise.

#### The Power of Pink

What makes pink noise a better default than white noise or OU noise? We examine this question using two simple environments which mirror common dynamics:

1. A bounded integrator:

$$s_{t+1} = \text{clip}(s_t + a_t, -c\mathbf{1}, +c\mathbf{1})$$
  $\rightarrow$  Parameterized by area (4 $c^2$ )

2. A harmonic oscillator:

$$\ddot{x} = \frac{F}{m} - \frac{k}{m}x$$
  $\rightarrow$  Parameterized by resonant frequency  $f = \frac{1}{2\pi}\sqrt{\frac{k}{m}}$ 

We now vary the parameters (c, f) over the complete sensible range (for episode lengths of T=1000 and noise with  $var[\varepsilon_t]=1$ ) and measure the quality of exploration.



Takeaway: The intermediate temporal correlation makes pink noise more general.

- It is less sensitive to the environment parameterization than white noise / OU noise.  $\rightarrow$  If the parameterization (e.g. c or f) is unknown, pink noise is the best choice.
- This explains the good average performance on the benchmark experiments.

### Conclusion

We recommend pink noise as the default choice for action noise in reinforcement learning for continuous control. pip install pink-noise-rl











#### References

- [1] Cristina Pinneri et al. Sample-efficient Cross-Entropy Method for Real-time Planning. CoRL 2020.
- [2] Abbas Abdolmaleki et al. Maximum a Posteriori Policy Optimisation. ICLR 2018.
- [3] Tuomas Haarnoja et al. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. ICML 2018.