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ABSTRACT

In off-policy deep reinforcement learning with continuous action spaces, explo-
ration is often implemented by injecting action noise into the action selection
process. Popular algorithms based on stochastic policies, such as SAC or MPO,
inject white noise by sampling actions from uncorrelated Gaussian distributions. In
many tasks, however, white noise does not provide sufficient exploration, and tem-
porally correlated noise is used instead. A common choice is Ornstein-Uhlenbeck
(OU) noise, which is closely related to Brownian motion (red noise). Both red
noise and white noise belong to the broad family of colored noise. In this work, we
perform a comprehensive experimental evaluation on MPO and SAC to explore
the effectiveness of other colors of noise as action noise. We find that pink noise,
which is halfway between white and red noise, significantly outperforms white
noise, OU noise, and other alternatives on a wide range of environments. Thus, we
recommend it as the default choice for action noise in continuous control.

1 INTRODUCTION

Exploration is vitally important in reinforcement learning (RL) to find unknown high reward regions
in the state space. This is especially challenging in continuous control settings, such as robotics,
because it is often necessary to coordinate behavior over many steps to reach a sufficiently different
state. The simplest exploration method is to use action noise, which adds small random perturbations
to the policy’s actions. In off-policy algorithms, where the exploratory behavioral policy does not
need to match the target policy, action noise may be drawn from any random process. If the policy
is deterministic, as in DDPG (Lillicrap et al., 2016) and TD3 (Fujimoto et al., 2018), action noise
is typically white noise (drawn from temporally uncorrelated Gaussian distributions) or Ornstein-
Uhlenbeck (OU) noise, and is added to the policy’s actions. In algorithms where the policy is
stochastic, such as SAC (Haarnoja et al., 2018) or MPO (Abdolmaleki et al., 2018), the action
sampling itself introduces randomness. As the sampling noise is typically uncorrelated over time,
these algorithms effectively employ a scale-modulated version of additive white noise, where the
noise scale varies for different states.

White noise Pink noise OU noiseFigure 1: Trajectories of
pure noise agents on a
bounded integrator environ-
ment (Sec. 6). White action
noise (left) does not reach
far in this environment, and
it would not be able to col-
lect a sparse reward at the
edges: it explores locally.
OU noise (right) only explores globally and gets stuck at the edges. Pink noise (center) provides a
balance of local and global exploration, and covers the state space more uniformly than the other two.
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In many cases, white noise exploration is not sufficient to reach relevant states. Both MPO and SAC
have severe problems with certain simple tasks like MountainCar because of inadequate exploration.
As in TD3 or DDPG, the off-policy nature of these algorithms makes it possible to replace the white
noise process, which is implicitly used for action sampling, by a different random process. The
effectiveness of temporal correlation in the action selection has been noted before (e.g. Osband et al.,
2016) and is illustrated in Fig. 1, where the exploration behavior of white noise (uncorrelated) is
compared to that of noises with intermediate (pink noise) and strong (OU noise) temporal correlation
on a simple integrator environment (more on this in Sec. 6). Using highly correlated noise, such
as OU noise, can yield sufficient exploration to deal with these hard cases, but it also introduces
a different problem: strongly off-policy trajectories. Too much exploration is not beneficial for
learning a good policy, as the on-policy state-visitation distribution must be covered during training
to make statistical learning possible. Thus, a typical approach is to use white noise by default, and
alternatives like OU noise only when necessary. In this work, our goal is to find a better strategy,
by considering noises with intermediate temporal correlation, in the hope that these work well both
on environments where white noise is enough, and on those which require increased exploration.

To this end, we investigate the effectiveness of colored noise as action noise in deep RL. Colored noise
is a general family of temporally correlated noise processes with a parameter β to control the corre-
lation strength. It generalizes white noise (β = 0) and Brownian motion (red noise, β = 2), which is
closely related to OU noise. We find that average performance across a broad range of environments
can be increased significantly by using colored action noise with intermediate temporal correlation
(0 < β < 2). In particular, we find pink noise (β = 1) to be an excellent default choice. Interestingly,
pink noise has also been observed in the movement of humans: the slight swaying of still-standing
subjects, as well as the temporal deviations of musicians from the beat, have both been measured to ex-
hibit temporal correlations in accord with pink noise (Duarte & Zatsiorsky, 2001; Hennig et al., 2011).

Our work contributes a comprehensive experimental evaluation of various action noise types on MPO
and SAC. We find that pink noise has not only the best average performance across our selection of
environments, but that in 80% of cases it is not outperformed by any other noise type. We also find
that pink noise performs on par with an oracle that tunes the noise type to an environment, while
white and OU noise perform at 50% and 25% between the worst noise type selection and the oracle,
respectively. To investigate whether there are even better noise strategies, we test a color-schedule that
goes from globally exploring red noise to locally exploring white noise over the course of training,
as well as a bandit method to automatically tune the noise color to maximize rollout returns. Both
methods, though they significantly improve average performance when compared to white and OU
noise, are nevertheless significantly outperformed by pink noise. In addition to the results of our
experiments, we attempt to explain why pink noise works so well as a default choice, by constructing
environments with simplified dynamics and analyzing the different behaviors of pink, white and OU
noise. Our recommendation is to switch from the current default of white noise to pink noise.

2 BACKGROUND & RELATED WORK

Reinforcement learning (RL) has achieved impressive results, particularly in the discrete control
setting, such as achieving human-level performance in Atari games with DQN (Mnih et al., 2015) or
mastering the game of Go (Silver et al., 2016) by using deep networks as function approximators.
In this paper, we are concerned with the continuous control setting, which is especially appropriate
in robotics. In continuous action spaces, it is typically intractable to choose actions by optimizing
a value function over the action space. This makes many deep RL methods designed for discrete
control, such as DQN, not applicable. Instead, researchers have developed policy search methods
(e.g. Williams, 1992; Silver et al., 2014), which directly parameterize a policy. These methods can be
divided into on-policy algorithms, such as TRPO (Schulman et al., 2015) and PPO (Schulman et al.,
2017), and off-policy algorithms such as DDPG, TD3, SAC and MPO.

All these algorithms have to address the problem of exploration, which is fundamental to RL: in
order to improve policy performance, agents need to explore new behaviors while still learning to act
optimally. One idea to address exploration is to add a novelty bonus to the reward (e.g. Thrun, 1992).
In deep RL, this can be done by applying a bonus based on sample density (Tang et al., 2017) or
prediction error (Burda et al., 2019). Another method to encourage exploration is to take inspiration
from bandit methods like Thompson sampling (e.g. Russo et al., 2018), and act optimistically with

2



Published as a conference paper at ICLR 2023

respect to the uncertainty in the Q-function (Osband et al., 2016). The simplest strategy, however, is to
randomly perturb either the policy parameters (Plappert et al., 2018; Mania et al., 2018), or the actions
themselves. This can be done by randomly sampling a function for each episode that deterministically
alters the action selection (Raffin & Stulp, 2020), by learning correlations between action dimensions
and state space dimensions to induce increasing excitation in the environment (Schumacher et al.,
2022), or by learning an action prior from task-agnostic data (Bagatella et al., 2022).

In this work, we consider the simplest and most common form of exploration in continuous control:
action noise. Action noise can be either explicitly added to the policy, or implicitly, by randomly
sampling actions from a stochastic policy. The most common form of action noise is white noise,
which typically comes from sampling from independent Gaussian distributions at every time step.
Apart from white action noise, Lillicrap et al. (2016) successfully used temporally correlated Ornstein-
Uhlenbeck noise, and Pinneri et al. (2020) achieved improvements in model predictive control by
utilizing colored noise. Inspired by this success, in this work we investigate the effectiveness of
colored action noise in the context of model-free RL, specifically on MPO and SAC.

3 METHOD

In this paper, we investigate exploration using action noise. In algorithms like DDPG and TD3, where
the learned policy µ is deterministic, action noise is simply added to the policy:

at = µ(st) + σεt, (1)

where ε1:T = (ε1, . . . , εT ) is sampled from a random process, and σ is a scale parameter. If εt
is sampled independently at every time step, e.g. from a Gaussian distribution, then ε1:T is called
white noise (WN). This is the prevailing choice of action noise, though it is also common to use
time-correlated Ornstein-Uhlenbeck noise (ε1:T ∼ OUT ) (Uhlenbeck & Ornstein, 1930).

Algorithms which parameterize a stochastic policy, such as SAC and MPO, also use action noise. In
continuous action spaces, the most common policy distribution is a diagonal Gaussian, represented
by the functions µ(st) and σ(st): at ∼ N (µ(st),diag(σ(st))

2). This can equivalently be written as

at = µ(st) + σ(st)� εt, (2)

where εt ∼ N (0, I). In this case, the action noise ε1:T is again Gaussian white noise, which is
scale-modulated by the function σ.

White noise is not correlated over time (cov[εt, εt′ ] = 0). In some environments, this leads to
very slow exploration, which in turn leads to inadequate state space coverage, leaving high reward
regions undiscovered. Thus, it is often beneficial to use action noise with temporal correlation
(cov[εt, εt′ ] > 0), like Ornstein-Uhlenbeck (OU) noise. OU noise was recommended as the default
choice for DDPG, and has been shown to lead to a significant increase in state space coverage
(Hollenstein et al., 2022). OU noise is defined by the stochastic differential equation (SDE)

ε̇t = −θεt + σηt, (3)

where ηt is a white noise process. If θ = 0, then this equation defines integrated white noise, also
called Brownian motion. Brownian motion is temporally correlated, but cannot be used as action
noise if generated in this way, because its variance increases unboundedly over time, violating the
action space limits. This problem is addressed by setting θ > 0 (a typical choice is θ = 0.15), which
bounds the variance. More details about OU noise and Brownian motion can be found in Sec. A.

A broad family of temporally correlated noises is given by colored noise, which generalizes both
white noise and Brownian motion (in this context called red noise).

Definition 1 (Colored noise). A stochastic process is called colored noise with color parameter β, if
signals ε(t) drawn from it have the property |ε̂(f)|2 ∝ f−β , where ε̂(f) = F [ε(t)](f) denotes the
Fourier transform of ε(t) (f is the frequency) and |ε̂(f)|2 is called the power spectral density (PSD).

The color parameter β controls the amount of temporal correlation in the signal. The PSDs of colored
noise with different β are shown in Fig. A.2. If β = 0, then the signal is uncorrelated, and the
PSD is flat, meaning that all frequencies are equally represented. This noise is called white noise in
analogy to light, where a signal with equal power on all visible frequencies is perceived as white.
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Figure 2: The environments we use: Pendulum, CartPole (balance + swingup tasks), Ball-In-Cup,
MountainCar, Hopper, Walker, Reacher, Cheetah, Door. See Sec. C for more details. Images partly
taken from Tassa et al. (2018) with permission.

Red noise (β = 2) is named so, because it has more weight on lower frequencies, which in light
corresponds to the red part of the spectrum. Gaussian colored noise with constant variance can be
efficiently generated, and the complete noise signal for an episode can be sampled at once, to be
used as action noise according to Equations (1) and (2). If generated like this, which we denote by
ε1:T ∼ CNT (β) (more details in Sec. A), white noise is identical to independently sampling from
a Gaussian distribution at every time step. Red noise (CNT (2)) is very similar to OU noise with
the default setting θ = 0.15, as both are essentially Brownian motion with bounded variance (see
Fig. A.2).1 By setting 0 < β < 2, colored noise allows us to search for a better default action noise
type with intermediate temporal correlation between white and red noise. One special case is pink
noise, which is defined by β = 1.

4 IS PINK NOISE ALL YOU NEED?

Fujimoto et al. (2018) found that the type of action noise (white or OU) in general does not influence
the performance of TD3. In contrast to this, Hollenstein et al. (2022) found that the noise type
does have an influence, but that the impact of this choice, as well as which noise type is preferable,
depends entirely on the environment. We start by confirming these latter results2, and compare white
and OU action noise with a selection of colored action noises (β ∈ [0, 2]), in terms of the achieved
performance. In all of our experiments we use MPO and SAC, relying on the implementations by
Pardo (2020) and Raffin et al. (2021), respectively. We found that both algorithms significantly
outperform TD3 across tasks, and thus only briefly discuss TD3 in Sec. B.1. Since the optimality
of an action noise type depends on the environment, we perform experiments on a diverse set of 10
different tasks taken from the DeepMind Control Suite (Tassa et al., 2018), OpenAI Gym (Brockman
et al., 2016), and the Adroit hand suite (Rajeswaran et al., 2018). These environments are shown in
Fig. 2 and are described in more detail in Sec. C. We report results on some additional tasks in Sec. G.

To evaluate the performance of a training procedure (which always lasts 106 environment interactions),
we run 5 evaluation rollouts every 104 interactions. We then report the performance as the mean
return of all these evaluation rollouts. Since this performance is related to the area under the learning
curve, it is a measure combining both the final policy performance, and the sample efficiency of
an algorithm. More detailed results, including learning curves and an analysis of the final policy
performance, can be found in Sections B.2 and H.

4.1 DOES THE NOISE TYPE MATTER?

To assess the importance of the choice of action noise, we evaluate the performances achieved
by SAC and MPO when using white noise, OU noise and colored noise as action noise (where

1Other settings of θ for OU noise, which are less similar to red noise, are discussed in Sec. A. In the main
text we only consider the default setting of θ = 0.15.

2We also confirm the former results (see Sec. B.1), but find that colored noise (especially pink noise)
outperforms both white and OU noise on TD3.

4



Published as a conference paper at ICLR 2023

WN 0.1 0.2 0.35 0.5 0.75 1.0 1.5 2.0 OU

β

−1.0

−0.5

0.0

0.5

A
ve

ra
ge

Pe
rf

or
m

an
ce

Figure 3: Bootstrap distributions for the expected
average performance of MPO and SAC using dif-
ferent action noise types (details in Sec. B.2). High-
lighted are white noise (WN), pink noise (β = 1),
and Ornstein-Uhlenbeck noise (OU).

Environment Best noise p Pink?

Pendulum 2.0 0.01 7
Cartpole (b.) 1.0 (Pink) — 3
Cartpole (s.) 1.0 (Pink) — 3
Ball-In-Cup 0.75 0.88 3
MountainCar 2.0 0.59 3
Hopper 1.0 (Pink) — 3
Walker 0.5 0.36 3
Reacher White noise 0.02 7
Cheetah 0.75 0.62 3
Door 0.75 0.65 3

Table 1: A Welch t-test reveals that the per-
formance difference between pink noise and
the best noise is only significant in two out
of ten environments. The rightmost column
answers whether pink noise performs equally
well as the best noise type.

β ∈ {0.1, 0.2, 0.35, 0.5, 0.75, 1, 1.5, 2}), on the benchmark environments shown in Fig. 2. We repeat
all learning runs with 20 different seeds, resulting in a total of 20×10×2×10 = 4000 experiments3,
each one reporting a single scalar performance. To control for the influence of the algorithm and
environment on the performance of a particular noise type, we group all results by algorithm and
task, and normalize them to zero mean and unit variance. We then calculate a noise type’s average
performance: the normalized performance of all runs using this noise type, averaged across algorithms
and environments. In Fig. 3, bootstrap distributions for the expected average performances are shown,
generated using the 20 random seeds available per task and algorithm (more details in Sec. B.2). It
can be seen that the noise type indeed matters for performance. A clear preference for pink noise
(β = 1) becomes visible, which considerably outperforms white noise and OU noise across tasks. In
Sec. B.2, this performance difference can be seen on the corresponding learning curves, where we
compare white, OU and pink noise.

Achieving the best average performance across environments is not the same as being the best
performing option on each individual environment. This begs the question of when pink noise (the
best general option) also performs as good as an environment’s best noise type. We perform a Welch
t-test for each environment to check whether the expected difference between the performances of
pink noise and the task-specific best noise4 is significant. The results are listed in Table 1. Although
pink noise only achieves the highest mean across seeds in three of the ten tasks, the statistical analysis
reveals that the difference between pink noise and the best noise type is only significant in two out of
ten cases. In other words, in the tested environments, pink noise performs on par with the best choice
of noise type in 80% of cases! What about the two environments, Pendulum and Reacher, where pink
noise is outperformed by other noise types? On Pendulum, pink noise, on average, achieves 83% of
the performance of red noise (β = 2). In contrast, white noise only achieves 39% of the performance
of red noise (OU performs similarly to red noise). On Reacher, pink noise achieves 99% of white
noise’s performance, while OU noise achieves only 76%. So, even on the few environments where
pink noise is outperformed significantly, it is clearly preferable as a default over white noise and OU
noise. These results indicate that pink noise seems to be all you need.

4.2 IS PINK NOISE A GOOD DEFAULT?

The best performance on a given environment is always achieved with the task-specific best action
noise type. It would be nice to always use this best noise type, but it is often unpractical to run a large
hyperparameter search to find it, especially when including many possible colors β. It is common
therefore, to stick to a “default” choice, which is typically white noise. In the previous section, we
saw that pink noise is a better default choice than white noise, but it is still unclear whether this is

3seeds × tasks × algorithms × noise types (WN + OU + 8 colors)
4To compute the best noise type, we normalize out the contribution of the algorithm (similarly to the average

performance) and take the mean performance over random seeds on each environment.
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expected average performances of all
methods we discuss in this paper. High-
lighted are again white noise and OU
noise (the popular options), as well as
pink noise (our suggestion). While OU
noise and white noise only achieve about
25% and 50% of the possible perfor-
mance gain of an oracle method, pink
noise performs equally to the oracle! Pink
noise is also not outperformed by a color-
scheduling method (Sec. 5.1), nor by a
bandit algorithm (Sec. 5.2).

enough, or if a hyperparameter search might be needed for good performance. In this section, we will
analyze how much performance is lost by sticking to a default value of white noise, pink noise, or
OU noise, compared to using the task-specific best noise type.

We choose the task-specific best noise type via an “oracle” method, which can be thought of as a very
extensive grid search: an environment’s best noise type is selected by looking at the results of all
noise types, and choosing the best performing option across 10 seeds. By also doing an “anti-oracle”
experiment, which selects the worst noise type on each environment (i.e. the most unlucky pick of
noise types possible), we can define a new “performance gain” measure, which might be easier to
interpret than the average performance in the previous section.5 The performance gain of a noise
type specifies where its average performance falls between the anti-oracle’s performance (0%) and
the oracle’s performance (100%). Figure 4 presents the performance gains of using white noise,
Ornstein-Uhlenbeck noise and pink noise as a default for all environments.

By always sticking to Ornstein-Uhlenbeck noise, only about 25% of the highest possible performance
gain is achieved, and the resulting performance would be closer to using the anti-oracle. By using
white noise instead, we already achieve a performance gain of over 50%. However, picking pink
noise does not appear to sacrifice any performance compared to the oracle!6 The gain achieved by
switching from white noise as the default to pink noise is both considerable and significant, and we
recommend switching to pink noise as the default action noise.

5 ALL THE COLORS OF THE RAINBOW

We have found that pink noise is the best default action noise over a broad range of environments.
There are still some environments, however, where pink noise is outperformed by other noise types,
specifically by white and red noise on the Reacher and Pendulum tasks, respectively. This indicates
that there may not exist a single noise type which performs best on all environments. However, this
consideration is only valid if the noise is kept constant over the course of training. If we instead try a
different approach, and choose the noise type separately for each rollout, we may find a strategy that
is outperformed nowhere. In this section we discuss two such non-constant methods, which differ in
the way a rollout’s noise type is selected: a color-schedule going from β = 2 to β = 0, and a bandit
approach with the intention of finding the optimal color for an environment.

5.1 IS COLOR-SCHEDULING BETTER THAN PINK NOISE?

To find a more effective exploration method than pink noise, it is helpful to understand why learning
in the Pendulum and Reacher environments works better with other noise types. The Pendulum
environment is underactuated and requires a gradual build-up of momentum by slowly swinging back
and forth. Strongly correlated action noise, such as red noise, makes this behavior much more likely.
The Reacher task, on the other hand, has neither a particularly large state space, nor does it exhibit

5The (anti-)oracle is evaluated on the 10 seeds not used for noise type selection to avoid sampling bias. We
repeat this by selecting (evaluating) once on the first (latter) 10 seeds, and once on the latter (first) 10 seeds.

6It looks as if pink noise is even exceeding the oracle’s performance. This difference is not statistically
significant and is due to the oracle only having access to the 10 seeds not used for evaluation.
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Environment P > S P < S Pink ≥ Schedule? P > B P < B Pink ≥ Bandit?

Pendulum <0.01 7 0.73 3
Cartpole (b.) <0.01 3 0.10 3
Cartpole (s.) 0.01 3 <0.01 3
Ball-In-Cup <0.01 3 0.47 3
MountainCar 0.15 3 0.29 3
Hopper 0.05 3 0.15 3
Walker <0.01 3 0.28 3
Reacher <0.01 3 0.50 3
Cheetah 0.05 3 0.64 3
Door 0.15 3 0.27 3

Table 2: How does pink noise compare to a schedule and a bandit method? For each environment, we
perform a Welch t-test to test for inequality of the performances of pink noise vs. the schedule/bandit
method. The p-values are arranged to show which performance is higher. Pink noise performs
significantly better than the schedule on most environments. Compared to the bandit algorithm, pink
noise performs better overall, but on most environments the difference is not significant. In the “Pink
≥ ...?” columns, (3) means that pink noise does not perform significantly worse than the alternative.

under-actuation, such that white noise is well suited to explore the space. Here, temporally correlated
noise will only lead to off-policy trajectory data, thereby inhibiting learning. In general, strongly
correlated noise leads to more global exploration, while uncorrelated noise explores more locally.
We return to these ideas in Sec. 6, where we analyze the effects of high and low correlation on two
simple environments.

Our method should work well on both of these environments, and on environments which require a
mix of local and global exploration. Thus, we are looking for a strategy which balances local and
global exploration. A simple idea to do this is a color-schedule: start with highly correlated red noise
(β = 2) and then slowly decrease β to white noise (β = 0) over the course of training. The rationale
behind this strategy is that high-reward regions can be quickly discovered at the beginning of training
when β is large, while the trajectories get more on-policy over time, helping with environments like
Reacher. Indeed, a similar approach that schedules the action noise scale, has been shown to work
quite well (Hollenstein et al., 2022).

We implement a β-schedule, which linearly goes from β = 2 to β = 0, on MPO and SAC and repeat
the experiment with 20 random seeds on all environments. Bootstrap distributions for the expected
average performance across environments are shown in Fig. 4 (denoted by Schedule). The results
indicate that the schedule is generally better than OU and white noise, but does not outperform pink
noise. Indeed, pink noise is significantly better, as the confidence intervals do not overlap. If we take
a more detailed look at the individual environments (Table 2), we see that thanks to the additional
highly correlated noise, the schedule does outperform pink noise on the Pendulum environment, as
expected. However, in all other environments pink noise either significantly outperforms the schedule
or they perform on par, so our recommendation to use pink noise as a default remains.

5.2 IS BANDIT COLOR SELECTION BETTER THAN PINK NOISE?

The results in the previous section indicate that, while changing the noise type over the training
process can improve performance, simply moving from globally exploring red noise to more locally
exploring white noise does not outperform pink noise. Instead of trying to find a different schedule to
fit all environments, in this section we consider an adaptive approach. By using a bandit algorithm to
select the action noise color for each rollout on the basis of past rollout returns, it might be possible
to find not only the general best noise for a given environment, but even to automatically adapt the
noise to different stages of training. The bandit algorithm we use is based on Thompson sampling,
the details are explained in Sec. D.

We use the rollout return itself as the bandit reward signal. The reasoning for this is that in environ-
ments where strong exploration is necessary (such as Pendulum and MountainCar), high return will
only be achieved by strongly correlated actions. On the other hand, if environments do not require
correlated actions, or a capable policy has been learned, the highest return should be achieved by the
action noise which least disturbs the policy, i.e. noise with a low correlation.
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As an additional baseline, we also perform an experiment where a color (β) is randomly selected
for each rollout.7 For both methods we use the same list of β values as in Sec. 4.1 (incl. β = 0),
and repeat the experiments with 20 random seeds. The results on MPO and SAC are shown in
Fig. 4 (marked with Bandit and Random) and Table 2. It can be seen that the bandit method is
again outperformed by pink noise. Indeed, a bootstrapping test yields a highly significant difference
in expected average performance across environments (p = 0.005). Looking at the results on the
individual tasks (Table 2), it seems like the bandit method does outperform pink noise on the two
problematic environments (Pendulum and Reacher), however, this difference is not significant. A
detailed comparison of the bandit and its random baseline can be found in Table D.1, which shows
that neither of the two methods significantly outperforms the other on any environment. This indicates
that, while there may be merit in changing the noise type over the training process, the rollout return
appears to contain too little information to effectively guide the noise type selection. Thus, our
recommendation to use pink noise as a default remains unchanged.

6 HOW DO ACTION NOISE AND ENVIRONMENT DYNAMICS INTERACT?

Why is pink noise such a good default noise type? In Sec. 5.1, we briefly discussed the concepts of
local and global exploration, and hypothesized that the best exploration behavior provides a balance
of the two, such that high reward regions will be found, while trajectories are not too off-policy. To
analyze how different noise types behave, we will look at a simplified bounded integrator environment:
a velocity-controlled 2D particle moving in a box (more details in Sec. F.2). If we control this particle
purely by noise, we can analyze the exploration behavior in isolation of a policy. As a first test, we run
20 episodes of 1000 steps in an environment of size 250× 250 with white noise, pink noise, and OU
noise (all with unit variance, x- and y-velocity controlled independently). The resulting trajectories
are shown in Fig. 1. It can be seen that pink noise provides the best combination of local and global
exploration: it reaches the edges (unlike white noise), but does not get stuck there (unlike OU noise).

A good mix of local and global exploration gives rise to a more uniform state space coverage, as
can be seen in Fig. 1. Thus, how well a noise type explores depends highly on the size of the
environment: if the environment was much smaller, white noise would be enough to cover the space
and pink noise trajectories would look similar to the OU trajectories shown here. On the other
hand, if the environment were bigger, then pink noise would not reach the edges and OU noise
would explore better. The uniformity of the state space coverage is measured by the entropy of the
state-visitation distribution. We estimate the entropy induced by a noise type using a histogram
density approximation: we partition the state space into a number of boxes (50× 50 = 2500 boxes),
sample 104 trajectories, and count the number of sampled points in each box.

Figure 5 shows the entropy achieved by white noise, OU noise and pink noise as a function of the
environment size. The sizes are chosen to reflect the complete sensible range for episode lengths of
1000 steps, each with unit variance: from very small (50 × 50) to very large (2000 × 2000). Pink
noise is not “special” in the sense that it performs best on all environments, as we already saw in
the previous sections. However, it performs best on “medium scales”, as determined by the episode
length, and does not suffer from severe degradation in performance over the whole spectrum of
sensible environments. If we do not know where on this spectrum a given environment lies, then pink
noise is clearly a better default choice than white noise or OU noise!

Besides integrating actions, another common aspect of environment dynamics is oscillation. Oscil-
lation dynamics are dominant in the Pendulum and MountainCar environments8, but also relevant
in other domains, like Ball-In-Cup, Cartpole, and Walker. To model these dynamics, we construct
a second environment: a simple harmonic oscillator. This system is a frictionless 1-dimensional phys-
ical setup, in which a mass m is attached to an ideal spring of stiffness k. The state space consists of
the mass’s position and velocity, and the action describes a force that is applied to the mass. The goal
is to maximize the energy in the oscillator system (which is equivalent to maximizing the amplitude),
similar to the MountainCar and Pendulum tasks, where this is necessary to collect the sparse reward.

The oscillator environment is parameterized by the resonant frequency f of the system, which is fixed
by setting the stiffness k = 4π2 and the mass m = 1/f2 (more details in Sec. F.1). Figure 5 shows

7This method would be roughly equivalent to the bandit method if we provided no bandit reward signal.
8See Sec. E for a simple method exploiting this property to solve MountainCar.
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Figure 5: Pink noise strikes a favorable middle ground between white noise and Ornstein-Uhlenbeck
noise on a wide range of environments. On both a bounded integrator environment parameterized
by its size (left), and on a simple harmonic oscillator environment parameterized by its resonant
frequency (right), it is much more general in terms of the range of parameters which yield good
results, and performs well on the complete range of reasonable parameterizations. We argue that this
quality is what makes it a good default.

the average energy in the oscillator system (over 1000 episodes of 1000 steps each) as a function of
the resonant frequency f , which we vary from very low (f = 1

1000 , episode length = 1 period) to
very high (f = 1

2 , Nyquist frequency), when driven by white noise, pink noise, and OU noise. The
energy is measured relative to the average energy achieved by a sinusoidal excitation at the resonant
frequency, denoted harmf . Even though this is a completely different setup to the bounded integrator,
and we are using a very different performance metric, the two plots look remarkably similar. Again,
this shows the power of pink noise as a default action noise: if we do not know the resonant frequency
of the given environment, pink noise is the best choice.

These two environments (bounded integrator and oscillator) are rather simplistic. However, the
dynamics of many real systems undoubtedly contain parts which resemble oscillations (when a spring
or pendulum is present), single or double integration (when velocities/steps or forces/torques are
translated into positions) or contact dynamics (such as the box in the bounded integrator). If an
environment’s dynamics are very complex, i.e. they contain many such individual parts, then the
ideal action noise should score highly on each of these “sub-tasks”. However, if all these individual
parts have different parameters (like the environment size or resonant frequency above), it stands
to reason that the best single action noise would be the one which is general enough to play well
with all parameterizations, i.e. pink noise. On the flip side, the average performance in Fig. 3 over all
environments may be interpreted as the performance over a very complicated environment, with the
sub-tasks being the “actual” environments. This might explain why we see this curve: all sub-tasks
have very different parameters, and require different action noises (as seen in Table 1), but pink noise
is general enough to work well on all sub-tasks, and thus easily outperforms noise types like white
noise or OU noise, which are only good on very specific environments (see Fig. 5).

7 CONCLUSION

In this work we performed a comprehensive experimental evaluation of colored noise as action noise
in deep reinforcement learning for continuous control. We compared a variety of colored noises
with the standard choices of white noise and Ornstein-Uhlenbeck noise, and found that pink noise
outperformed all other noise types when averaged across a selection of standard benchmarks. Pink
noise is only significantly outperformed by other noise types on two out of ten environments, and
overall performs equally well to an oracle selection of the noise type. Additionally, we compared
pink noise to more sophisticated methods that change the noise type over the course of training: a
color-schedule, a bandit method, and a random selection scheme. No method outperforms pink noise,
and our recommendation is to use pink noise as the default action noise. Finally, we studied the
behaviors of pure noise agents on two simplified environments: a bounded integrator and a harmonic
oscillator. The results showed that pink noise is much more general with respect to the environment
parameterization than white noise and OU noise, which sheds some light on why it performs so well
as the default choice.

9
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//github.com/martius-lab/pink-noise-rl). In an effort to ensure reproducibility, we
took particular care in applying random seeds to all randomized parts of the algorithms, including the
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Supplementary Material
PINK NOISE IS ALL YOU NEED

A COLORED NOISE AND ORNSTEIN-UHLENBECK NOISE

Colored noise has an interesting property that was not mentioned in the main text: integrating a
colored noise signal with parameter β again yields a colored noise signal, only with parameter
β + 2. This stems from the property of the Fourier transform that an integration in the time domain
corresponds to a multiplication with (i2πf)−1 in the frequency domain. Let v(t) be the original
colored noise signal with |v̂(f)|2 ∝ f−β . Then the PSD of x(t) =

∫ t

0
v(τ) dτ is

|x̂(f)|2 =

∣∣∣∣F[∫ t

0

v(τ) dτ

]
(f)

∣∣∣∣2 =

∣∣∣∣ 1

i2πf
v̂(f)

∣∣∣∣2 ∝ f−2|v̂(f)|2 ∝ f−(β+2). (4)

From this, and the definition of white noise as colored noise with β = 0, it follows that Brownian
motion (integrated white noise) is also colored noise with parameter β = 2. In Fig. A.1, sampled
signals of most of the noise types we use in this paper are shown, and in Fig. A.2, we plot the power
spectral densities of some of these.
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Figure A.1: Sampled signals from various action noise processes with noise scale σ = 1. The
exception is OU noise, whose noise scale is adjusted such that var[εt] = 1 (see discussion below).

We generate colored noise using the procedure described by Timmer & Koenig (1995), based
on the Fast Fourier Transform (FFT) (Cooley & Tukey, 1965). This method is very efficient, as
it only requires sampling a Gaussian signal in the frequency space (where the PSD is shaped),
and then transforming it to the time domain via the FFT. In particular, this procedure is faster
than sampling an Ornstein-Uhlenbeck signal (using the most common procedure, which we
describe below). We use the colorednoise Python package (https://github.com/
felixpatzelt/colorednoise) to sample colored noise signals, and always sample signals
of the complete episode length (which we denote by ε1:T ∼ CNT (β)). The Python implementation
contained a bug, which among other things made it so the generated “white noise” was correlated, and
our fix of this bug is included as of version 2.1.0 of the package. Colored noise sampled according to
this procedure is stationary and Gaussian: the signals are marginally identical to standard Gaussian
distributions, i.e. p(εt) = N (εt | 0, 1). The only difference to white noise (independent Gaussian
samples at every time step) is that they are temporally correlated: p(εt, εt′) 6= p(εt)p(εt′). This is
shown empirically on the example of pink noise in Fig. A.3.
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Figure A.2: Left: The power law trends can be seen in the PSDs of sampled colored noise signals.
Right: Brownian motion, here generated by integrating white noise sampled from N (0, 1), is
compared to two related stationary noises: Ornstein-Uhlenbeck noise (θ = 0.15), and red noise. The
similarity between OU and red noise is visible. All signals are of length T = 1000.

A.1 ORNSTEIN-UHLENBECK NOISE GENERATION AND VARIANCE CORRECTION

Also included in Fig. A.3 is Ornstein-Uhlenbeck (OU) noise. It can be seen that OU noise starts out
as non-stationary but quickly converges to the same marginal distribution p(εt) = N (εt | 0, 1) as
the other noise types. Important to note is that all these noise types are suitable for use as action
noise only because they are (or quickly become) stationary, and hence their variance does not grow
without bounds (contrary to that of Brownian motion). The property that all noise types have the same
marginal distribution shows that our results are only due to a change in the temporal correlation of
the action noise, not in the scale or shape of the distribution, as this is the same as of regular Gaussian
white noise. To make sure that OU noise converges to a standard Gaussian marginal distribution we
cannot use a noise scale of σ = 1, but have to correct it. Ornstein-Uhlenbeck noise can be defined by
the stochastic differential equation

dxt = −θxt dt+ σ dwt , (5)
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Figure A.3: The colored noise we use as action noise has the same marginal distribution as indepen-
dent Gaussian samples. We sampled 3×105 action noise signals of length T = 1000 from each of the
following random processes: independent Gaussian samples (white noise, left), pink noise (center),
Ornstein-Uhlenbeck noise (right). At every time step t we show a histogram density estimate over
action noise values εt. This shows that our results are only due to the increased temporal correlation
of the action noise signals, as the marginal distributions remain unchanged from white noise.
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where wt is a Wiener process (integrated white noise with the property that w(t)−w(t′) ∼ N (0, t−t′)
for any 0 ≤ t′ < t). This definition of Ornstein-Uhlenbeck noise is equivalent to the Langevin
equation (3) in the main text, but is nicer to work with, as the white noise process ηt is ill-defined as
the derivative of the Wiener process. We sample OU noise signals by discretizing the equation above:

x[t+∆t] = x[t]− θx[t]∆t+ σ
√
∆tε, (6)

where ε ∼ N (0, 1). Denoting xt := x[t∆t] (with x−1 = 0) and εt ∼ N (0, 1) for all t ∈ N0, it can
be seen that

x0 = σ
√
∆tε0

x1 = x0 − θx0∆t+ σ
√
∆tε1

= σ
√
∆t(1− θ∆t)ε0 + σ

√
∆tε1

x2 = σ
√
∆t(1− θ∆t)2ε0 + σ

√
∆t(1− θ∆t)ε1 + σ

√
∆tε2

...
xt = σ

√
∆t

t∑
τ=0

(1− θ∆t)t−τετ .

Thus, as a sum of zero-mean Gaussian distributions, the marginal distribution is:

p(xt) = σ
√
∆tN

(
0,

t∑
τ=0

((1− θ∆t)t−τ )2

)

= N

(
0, σ2∆t

t∑
τ=0

(1− θ∆t)2τ

)
.

The variance of this distribution is a geometric series which converges as t→∞ if (1− θ∆t)2 < 1,
which holds if 0 < θ∆t < 2. It is interesting to note that if θ∆t = 1, then Eq. (6) yields white noise,
as it reduces to xt = σ

√
∆tε. On the other hand, if θ∆t = 0, the equation describes integrated white

noise (Brownian motion), which is known to have unbounded variance. If 1 < θ∆t < 2, then the
signal exhibits negative temporal correlation, which follows from Eq. (6). If the geometric series
converges, then the limiting variance is given by

σ2∆t

1− (1− θ∆t)2
.

We can thus ensure a standard Gaussian marginal distribution (in the limit) by setting the noise scale
to a “corrected” value of

σ =

√
1− (1− θ∆t)2

∆t
, (7)

which is how we set the OU noise scale throughout the paper to make the comparison with white
and colored noise fair. In Fig. A.3, it can be seen that this limiting marginal distribution is reached
fairly quickly. In Sec. B, we also report Ornstein-Uhlenbeck results with the more common choice of
σ = 1, which we find to generally perform slightly worse (cf. Fig. B.1).

If the variance is corrected, then θ∆t is the only parameter of OU noise, such that e.g. (θ = 0.3,∆t =
1) is equivalent to (θ = 30,∆t = 0.01). This immediately follows by plugging Eq. (7) into Eq. (6),
yielding

xt+1 = (1− θ∆t)xt +
√
1− (1− θ∆t)2εt,

which only contains the product θ∆t as a parameter. In this paper we thus set ∆t = 0.01 without
loss of generality. In the main text we also only consider OU noise as a replacement for strongly
correlated Brownian motion and always set θ = 0.15, as this is the most common default setting used
in practice.9 However, as noted in the discussion above, Ornstein-Uhlenbeck noise can also exhibit
intermediate temporal correlation between white noise and Brownian motion, by setting 0 < θ < 100
(i.e. 0 < θ∆t < 1). This raises the question of whether there is a certain parameterization of OU
noise which is as general as pink noise.

9We chose these values for ∆t and θ because these are the default choices the RL libraries we consider
(Raffin et al., 2021; Pardo, 2020). Lillicrap et al. (2016) also recommend θ = 0.15. If the variance is not
corrected (we report these experiments in Sec. B), then the choice of ∆t does make a difference.
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Figure A.4: Left: Power spectral densities of OU noise. OU noise interpolates between white noise
and Brownian motion by changing the cutoff frequency of a low-pass filter which filters white noise.
Center: Entropy achieved by OU noise of different θ on the bounded integrator environment. No
θ achieves a higher worst-case entropy than pink noise. Right: Energy achieved by OU noise of
different θ on the harmonic oscillator environment. No θ achieves a worst-case energy that comes
close to the one of pink noise.

A.2 GENERALITY OF ORNSTEIN-UHLENBECK NOISE

The way in which OU noise interpolates between white noise and Brownian motion by choosing
θ ∈ (0, 100) is very different to colored noise with β ∈ (0, 2). We have shown (e.g. in Fig. A.2)
that colored noise with intermediate temporal correlation has a power-law power spectral density
with intermediate exponent (or slope in the log-log plot). On the other hand, Ornstein-Uhlenbeck
noise can be interpreted as a “leaky integration” of white noise, i.e. white noise passed through a
low-pass filter. How “leaky” this integrator is, is controlled by the parameter θ: if θ = 0 then the
integrator is ideal, resulting in integrated white noise (Brownian motion with diverging variance). If
θ = 100 (with ∆t = 0.01), then the integrator is “completely leaky” (an all-pass filter) and the white
noise passes through without being integrated. In terms of the power spectral density this change
in θ corresponds to shifting the cutoff frequency of the low-pass filter. This is shown on the left in
Fig. A.4 for θ ∈ {0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100}.
For an action noise type to be general (cf. Sec. 6), we want it to work well on all environments. In
the power spectral density plots, it can already be seen that pink noise distributes power over the
frequencies much more “generally” than Ornstein-Uhlenbeck noise of any θ: At any given frequency
f , pink noise exhibits higher power than most values of θ, and all values of θ have lower power than
pink noise at most frequencies. Why this makes pink noise a more general action noise can be made
more concrete by revisiting the bounded integrator and harmonic oscillator environments introduced
in Sec. 6. The generality of a noise measures how robust it is to the choice or parameterization of the
environment: The most general noise type is the one which performs best on the most adversarial
environment parameterization. Thus, the most general θ for an environment parameterized by a
parameter α solves the following optimization problem:

max
θ

min
α

perf(α, θ),

where the performance metric perf(α, θ) should be normalized appropriately such that the maximum
performance attainable for different values of α is identical. This can be ensured by simply dividing
by the performance attained by the best θ for each value of α:

max
θ

min
α,θ′

perf(α, θ)

perf(α, θ′)︸ ︷︷ ︸
generality(θ)

. (8)

This gives the worst-case performance of the most general noise in terms of the best possible
performance achievable by changing the noise type on this worst-case environment. By replacing the
expression perf(α, θ) by perf(α, pink) and removing the maximization over θ, we can also calculate
the generality of pink noise.
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As discussed in Sec. 6, the performance of a noise type on the bounded integrator and oscillator
environments is given by the achieved entropy and energy, respectively. This is shown for all values θ
(as well as for pink noise) in Fig. A.4, where the parameterization parameter α is the environment size
for the bounded integrator and the resonant frequency for the harmonic oscillator. It can already be
seen that on both environments, for each choice of θ there exists a parameter α where the performance
of θ is worse than the worst-case performance of pink noise. This can be quantified by calculating
the generality of each θ and pink noise on these environments according to Eq. (8). On the bounded
integrator, the maximum generality of OU noise is 77%, and on the oscillator environment the
maximum generality is 9.1%. On both environments, the maximum is attained by θ = 3. Pink
noise achieves generalities of 79% and 22% on the bounded integrator and oscillator environments,
respectively. This gives further evidence that pink noise is a good default.

B ADDITIONAL RESULTS

B.1 TD3

In addition to MPO and SAC, we also performed all experiments from the main text on TD3. MPO
and SAC parameterize a stochastic policy, meaning they learn the action noise scale as a function
σ(s) of the state. TD3, on the other hand, uses a deterministic policy, and the action noise is added
independently of the state. Usually, the noise scale σ is kept fixed over the course of training, and this
how we handle it in our experiments as well. However, σ is an important hyperparameter, and there
is no single value that works well on all environments. Thus, we repeat our experiments with all of
the values σ ∈ {0.05, 0.1, 0.3, 0.5, 1}, and 10 different random seeds.

In Fig. B.1, the results of the TD3 experiments with constant noise type are shown in the form of
bootstrap distributions for the expected average performance, and compared to the same experiments
on MPO and SAC, as well as to a Fig. 3-like plot where the influence of the agent has been normalized
out. As we have an additional hyperparameter (σ), we first average the TD3 performance over all σ
values, before computing the average performance across tasks. The beneficial effect of pink noise
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Figure B.1: All three algorithms (MPO, SAC, TD3) show a clear preference for pink action noise
as measured by the average performance over the environments of Fig. 2. The results of the OU
experiments with the uncorrected noise scale of σ = 1 are marked with a dotted median.
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Figure B.2: Average performances
across environments are combined
from all β values (incl. WN). It can
be seen that TD3 is consistently out-
performed by both MPO and SAC.
A closer look at the mean perfor-
mance over all β values on each
individual environment reveals that
TD3 is outperformed on all environ-
ments by both MPO and SAC.

can be clearly seen on TD3 as well. In this figure we also show the results of Ornstein-Uhlenbeck
noise with a noise scale of σ = 1 rather than the corrected noise scale of Eq. (7). Incidentally, these
results also confirm Fujimoto et al. (2018)’s finding that, on TD3, white noise and OU noise (with
θ = 0.15) perform similarly.

The reason why we did not include TD3 into the analysis of the main text, is that we found TD3 to
be consistently outperformed by both MPO and SAC. In Fig. B.2, the average performances across
environments are combined from all β values (incl. white noise), and shown for MPO, SAC and
TD3. It can be seen that TD3 generally performs much worse than MPO and SAC. Looking at the
mean performance over all β values on each individual environment, TD3 is outperformed on all
environments by both MPO and SAC. We thus decided to exclude TD3 from our main analysis.

B.2 MPO & SAC

In the majority of this work, we measure performance in terms of the mean evaluation return over a
training process. We use this method, because it implicitly measures both the final policy performance,
and the sample efficiency (how quickly does the algorithm reach high performance). Most of the data
we present is additionally normalized, which is necessary to aggregate performances over different
environments, and thus it is often not very clear how exactly to interpret the results (other than
recognizing statistical significance). In this section, we want to present some of our results in more
familiar terms, namely learning curves and final policy performance.

To validate the approach of using the (mean) performance instead of the performance of the final
policy, we have reproduced the results in Fig. 3 using the final policy performance (mean evaluation
return in the last 5% of the training process), shown in Fig. B.3. In Fig. B.4, we show learning curves
of white noise, pink noise, and OU noise on all environments for MPO and SAC. Both visualizations
confirm our takeaway that pink noise is a better default action noise than white noise or OU noise.
More detailed results can be found in Sec. H.

The bootstrap distributions for the expected average performance (such as in Figures 3, 4, B.1, and
B.3) are constructed by randomly choosing one seed for each environment, yielding one scalar
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formance is like the average perfor-
mance (see Sec. 4), but only uses
the evaluation returns of the last 5%
of training, thereby measuring the
quality of the final learned policy.
This figure shows the same anal-
ysis on MPO and SAC as Fig. 3,
and demonstrates that pink noise is
preferable also in terms of final pol-
icy performance.
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Figure B.4: Learning curves (median and interquartile range of evaluation returns) of the two baseline
action noise types white noise (WN) and Ornstein-Uhlenbeck (OU) noise, as well as our suggestion
of pink noise. It can be seen that pink noise, while not being better than both on all environments, is
the best default choice. It is never outperformed by both white noise and OU noise, and routinely
outperforms white noise (e.g. MountainCar), OU noise (e.g. Door), or both (e.g. Hopper).

(normalized) performance per environment, assuming all other variables like algorithm and noise type
are fixed. Averaging these normalized performances (the reason that performances are normalized
on each environment is so that this averaging is reasonable) gives an estimate for the average
performance across environments of the given variables (e.g. noise type and algorithm). As there are
S different random seeds (typically S = 20), we can repeat this procedure S times (with resampling)
and take the mean of all S average performance estimates, giving us an estimate for the expected
average performance of the given variables. Doing this N times (we use N = 105), the N estimates
for the expected average performance can be collected into a bootstrap distribution, as shown in these
figures.
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C ENVIRONMENTS & ALGORITHMS

We evaluate our method on 10 different tasks (see Fig. 2). Most of these are from the DeepMind
Control Suite (DMC, Tassa et al., 2018), but we also use OpenAI Gym (Brockman et al., 2016)
and the Adroit hand suite (Rajeswaran et al., 2018). The respective sources and exact IDs of all
environments are compiled in Table C.1. See Sec. G for results on additional tasks.

Environment Source ID

Pendulum DMC pendulum (swingup)
Cartpole (b.) DMC cartpole (balance_sparse)
Cartpole (s.) DMC cartpole (swingup_sparse)
Ball-In-Cup DMC ball_in_cup (catch)
MountainCar Gym MountainCarContinuous-v0
Hopper DMC hopper (hop)
Walker DMC walker (run)
Reacher DMC reacher (hard)
Cheetah DMC cheetah (run)
Door Adroit door-v0

Table C.1: Environments used in this work (see also Fig. 2).

For our experiments, we relied on the TD3 and SAC implementations in Stable-Baselines3 (Raffin
et al., 2021), as well as the MPO implementation in the Tonic RL library (Pardo, 2020). We only
used the default hyperparameters of these algorithms, as provided by the libraries. Our own code
for using colored noise with these libraries is made available online at https://github.com/
martius-lab/pink-noise-rl.

D BANDIT METHOD DETAILS

Algorithm D.1: Thompson Sampling
Input: Arms B = (β1, . . . , βK),

Reward distributions std σ
Initialize m ∈ RK ,Σ ∈ SK+
for i ∈ N do

Sample q ∼ N (m,Σ)
ai ← argmaxk∈{1,...,K} qk
τi ← Run rollout with βai

ri ← score of rollout τi
Do Bayesian update of m,Σ using
{aj , rj}ij=1, σ

end

To use a bandit algorithm to select the action noise
color β for a rollout, it is necessary to define the
bandit reward, which should score a rollout in terms
of the β that was chosen. In our case, we use the
rollout return (sum of rewards) as the score, as ex-
plained in Sec. 5.2. Additionally, we have to se-
lect a list of colors (“bandit arms”) to search over:
B = (β1, β2, . . . , βK) (with βk ∈ [0, 2],∀k in our
case). If we assume that the bandit rewards (= roll-
out scores) are Gaussian distributed with a known
standard deviation σ, we can use Bayesian inference
to estimate the means (µ ∈ RK) of the reward dis-
tributions. A simple bandit algorithm we can use in
this context is Thompson sampling, shown in Algo-
rithm D.1 (SK+ denotes the set of positive semi-definite K ×K matrices). The relationships between
the random variables are shown in the Bayesian network in Figure D.1a.

There is a second strong assumption in the Thompson sampling algorithm shown in Algorithm D.1
(similarly for other algorithms like UCB): it assumes that the reward distributions are stationary, i.e.
that they don’t change over time. This is not the case in the context of reinforcement learning: if
the rollout score ri is defined as the return, then, if the reinforcement learning algorithm works, it
should naturally be the case that the policy improves over time, and thus, on average, ri > rj for
i� j. This setting of non-stationary bandit distributions can be addressed by using a sliding-window
approach (e.g. Garivier & Moulines, 2008): instead of updating the belief parameters m,Σ with
respect to the whole history of observations, only keep a window of the last N rollouts.

There remains one other problem: how do we choose the prior parameters m and Σ and the variance
σ2 of the reward distributions? For Σ, the easiest solution is to assume independent arms, i.e. make
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Figure D.1: (a) A Bayesian bandit with Gaussian reward distributions. The rewards from arm k are
sampled from N (µk, σ). Thompson sampling (Alg. D.1) can infer µ while trading off exploration
and exploitation. (b) By introducing the constants b and c, the algorithm can be made scale invariant
by performing Thompson sampling with respect to the normalized reward r̃i = (ri − b)/c.

Σ diagonal. This is not necessarily the most efficient solution, as one can imagine that two similar
β values will also perform similarly in their rollouts.10 For m, the non-stationarity becomes a
problem: again assuming we use the rollout return as a score, these scores will probably be much
lower at the beginning of training than at the end. Additionally, we might not even know the scale
of returns in a task. To account for this, it would be necessary to make the prior variances Σkk very
large/uninformed. Similarly, σ needs to be large, to account for the unknown scale of the bandit
reward spread. However, this would mean that many more samples (rollouts) are necessary to tighten
the belief distributions. This is a problem, especially because we only have a small set of N rollouts
when using the sliding-window method.

The ideal would be a bandit method which is invariant with respect to affine transformations of the
rewards, in the sense that it would make no difference if all rewards r were transformed to be br + c
for some constants b > 0 and c ∈ R for all arms. In Fig. D.1b, this situation is shown in a Bayesian
network. Here, the generative process is almost the same as before (see Fig. D.1a), except that the
reward r̃i is scaled and translated by ri = br̃i + c before observation. If, as shown, the constants
b and c are independent of the chosen arm and stay constant within the window, it is possible to
optimize them via maximum marginal likelihood, given the window of past observations of ri.

The bandit inference task is to infer the distributional means µ = (µ1, . . . , µk) from the actions
(color indices) a = (ai)

N
i=1 and rewards (rollout scores) r = (ri)

N
i=1. We set the prior means of

the belief distributions to 0 (m = 0), because we want the normalized reward distributions to be
centered around 0. For now, we don’t fix Σ, but let it be any positive semi-definite K ×K matrix.
The generative model for r is defined via the following prior and likelihood function:

p(µ | Σ) = N (µ | 0,Σ) (9)

p(r | µ,a, b, c, σ) =
∏
i

N (ri | bµai
+ c, (bσ)2) (10)

These lead us to the following evidence/marginal likelihood function:

p(r | a, b, c, σ,Σ) =
∏
i

p(ri | ai, b, c, σ,Σ) (11)

=
∏
i

∫
p(ri | µ, ai, b, c, σ) p(µ | Σ)dµ (12)

=
∏
i

∫
N (ri | be>ai

µ+ c, (bσ)2)N (µ | 0,Σ)dµ (13)

=
∏
i

N (ri | be>ai
0+ c, (bσ)2 + be>ai

Σbeai
) (14)

10We also tried a different approach by using a modified RBF kernel matrix to account for covariance between
the arms, but the results were essentially the same as with independent arms.
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=
∏
i

N (ri | c, b2(σ2 +Σaiai)), (15)

where we used canonical basis vectors to represent µai
= e>ai

µ. For maximization, it is convenient
to work with the log-evidence:

log p(r | a, b, c, σ,Σ) = log
∏
i

N (ri | c, b2(σ2 +Σaiai
)) (16)

=
∑
i

−1

2
log
(
2πb2(σ2 +Σaiai)

)
− (c− ri)

2

2b2(σ2 +Σaiai)
(17)

=: L(b, c) (18)

We can now maximize the evidence by setting the partial derivatives to 0:

∂cL(b, c) ∝
∑
i

(c− ri) = 0 (19)

∂bL(b, c) =
∑
i

−1
b

+
(c− ri)

2

b3(σ2 +Σaiai)
= 0 (20)

Solving these equations gives us

c =
1

N

∑
i

ri (21)

b2 =
1

N

∑
i

(c− ri)
2

σ2 +Σaiai

. (22)

Using these values, we can “reconstruct” the unscaled/normalized reward

r̃i =
ri − c

b
(23)

and perform Thompson sampling with respect to r̃i. This normalized Thompson sampling algorithm,
including the sliding window modification, is presented in Algorithm D.2.

Algorithm D.2: Normalized TS
Input: Arms B = (β1, . . . , βK),

Window size N
Initialize
m← 0 ∈ RK ,Σ ∈ SK+ , σ ← 1

for l ∈ N do
i← l mod N
M ← min{l, N}
Sample q ∼ N (m,Σ)
ai ← argmaxk∈{1,...,K} qk
τi ← Run rollout with βai

ri ← score of rollout τi
c← 1

M

∑M
j=1 rj

b←
√

1
M

∑M
j=1

(c−rj)2

σ2+Σajaj

r̃i ← ri−c
b

Do Bayesian update of m,Σ using
{aj , r̃j}Mj=1, σ

end

Next, we want to show that this method is indeed in-
variant to affine transformations of the bandit reward.
Proposition 1. The posterior distribution over µ in
the normalized bandit algorithm (Alg. D.2) is iden-
tical for the observations r = (r1, . . . , rN ) and
r′ = b′r + c′, for all b′ > 0 and c′ ∈ R. In other
words, the algorithm is invariant to a scaling and
translation of the rewards.

Proof. In this setting, the observed rewards ri are
normalized to

r̃i =
ri − c(r)

b(r)
(24)

with

c(r) =
1

N

N∑
i=1

ri (25)

b(r) =

√√√√ 1

N

N∑
i=1

(c(r)− ri)2

σ2 +Σaiai

. (26)

To prove the invariance of the algorithm, we will simply show that this normalized reward is the same
for both sets of observations, i.e. that r̃ = r̃′. Then, clearly, the posteriors p(µ | r̃) and p(µ | r̃′)
will also be the same. Expanding r̃′, we get:
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r̃′ =
r′ − c(r′)

b(r′)
(27)

=
b′r + c′ − c(b′r + c′)

b(b′r + c′)
(28)

=
b′r + c′ − 1

N

∑N
i=1(b

′ri + c′)√√√√ 1

N

N∑
i=1

( 1
N

∑N
j=1(b

′rj + c′)− (b′ri + c′))2

σ2 +Σaiai

(29)

=
b′r + c′ − b′ 1

N

∑N
i=1 ri − c′√√√√ 1

N

N∑
i=1

(b′ 1
N

∑N
j=1 rj + c′ − b′ri − c′)2

σ2 +Σaiai

(30)

=
b′(r − c(r))√√√√ 1

N

N∑
i=1

b′
2
(c(r)− ri)

2

σ2 +Σaiai

(31)

=
r − c(r)

b(r)
(32)

= r̃ (33)

Thus, we can conclude that the reward normalization indeed guarantees invariance to affine reward
transformations in algorithms such as Thompson sampling.

With this reward normalization, the prior parameters m (of m = m1) and s (of Σ = s2I) become
redundant. We have already set m = 0, and we now also set the prior variances Σkk to 1. This en-
courages the algorithm to keep the normalized mean estimates µk approximately N (0, 1)-distributed.
The “likelihood” parameter σ remains to be tuned, but it is now not necessary to account for the
large uncertainty in the reward scale, as σ is only concerned with the normalized reward. In our
experiments we always set σ = 1.

D.1 BANDIT VS. RANDOM

Environment Bandit 6= Random p

Pendulum 7 0.98
Cartpole (b.) 7 0.09
Cartpole (s.) 7 0.67
Ball-In-Cup 7 0.87
MountainCar 7 0.54
Hopper 7 0.09
Walker 7 0.15
Reacher 7 0.70
Cheetah 7 0.20
Door 7 0.59

Table D.1: Bandit vs. Random (Welch t-test)

Although we found the normalized
bandit algorithm (Alg. D.2) to work
well on simple non-stationary tasks,
in the RL setting (for choosing β)
the performance was just as that of
a random β selection for every roll-
out. In Table D.1, we list the results
of a Welch t-test, testing for inequal-
ity of the performance distributions
achieved by the bandit algorithm and
random β selection on every environ-
ment. It can be seen that the two meth-
ods are statistically indistinguishable.
This shows that the bandit method
does not work as intended, as “ran-
dom arm selection” should be an easy
baseline to outperform. The reason for this is probably due to the rollout return not being informative
enough as a bandit reward signal.
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E SOLVING MOUNTAINCAR BY FFT

MountainCar is a very simple environment. Although its dynamics are almost those of a harmonic
oscillator, there is a difference to the oscillator environment from Sec. 6: MountainCar’s oscillation
dynamics are non-linear. At the bottom of MountainCar’s valley (see Fig. 2), the small-angle
approximation of a non-linear oscillator may be used, but for the motion to go up to the top, the
behavior is different from simple harmonic motion. Nevertheless, we can use this insight to develop a
very simple open-loop control algorithm to solve this environment, by running one rollout without
applying any action (just letting the mountain make the car go back and forth a bit), then analyzing
the resulting trajectory and inferring the hill’s (small-angle) resonant frequency (via the Fast Fourier
Transform algorithm). Finally, we can control the car by simply swinging it back and forth at the
resonant frequency. This algorithm, which works very well on this task, is shown below.

1 import gym
2 import numpy as np
3 from scipy.fft import rfft
4

5 # Initialize environment
6 env = gym.make('MountainCarContinuous-v0')
7 T = env._max_episode_steps
8

9 # Run a single rollout with no force. Save x-coordinate to `x`.
10 obs = env.reset()
11 x = [obs[0]]
12 for t in range(T):
13 obs, *_ = env.step([0])
14 x.append(obs[0])
15

16 # Find resonant frequency = highest peak of FFT (excluding DC)
17 f = (np.argmax(abs(rfft(x))[1:]) + 1) / (T + 1)
18

19 # Action plan (harmonic excitation)
20 a = np.sin(2*np.pi*f * np.arange(T))
21

22 # Test on 1000 rollouts
23 N = 1000
24 solved = 0
25 for i in range(N):
26 env.reset()
27 for t in range(T):
28 _, r, _, _ = env.step([a[t]])
29 if r > 0:
30 solved += 1
31 break
32

33 print(f"Solved: {solved/N * 100:.0f}%.") # prints "Solved: 100%."

F TOY ENVIRONMENT DETAILS

F.1 OSCILLATOR ENVIRONMENT

The oscillator environment of Sec. 6, which we make available online as a gym environment
(https://github.com/onnoeberhard/oscillator-gym), models the 1-dimensional
motion of a particle of mass m, attached to the origin by an ideal spring of stiffness k, damped with
friction coefficient b, and driven by a force (the action) F . This motion is described by the ordinary
differential equation

mẍ = F − bẋ− kx, (34)

where x is the particle’s position. In our experiments we set the friction coefficient b to zero, i.e.
the system is undamped. This setup is then called a simple harmonic oscillator. The energy of the
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oscillator is the sum of kinetic and potential energy:

E =
1

2
mẋ2 +

1

2
kx2. (35)

The resonant frequency is:

f =
1

2π

√
k

m
. (36)

As we want to configure the oscillator to have a given resonant frequency f , we need to find m and k
accordingly. To get a unique solution, we impose a second constraint: the energy at x = 1 and ẋ = 0
should be E = 2π2. If we now solve the two equations (35) and (36) for m and k, imposing the
constraint on E, we get the solution

k = 4π2 (37)

m =
1

f2
(38)

to set the resonant frequency. In Fig. F.1, a few pure-noise trajectories (akin to Fig. 1) are shown on
the oscillator environment.
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Figure F.1: Trajectories on the oscillator environment. For each of the 3 resonance frequencies
f ∈ {0.002, 0.02, 0.2}, we sample 5 action noise signals of length 10

f of white noise, pink noise and
OU noise. We can see what was already shown in Fig. 5: pink noise is much less sensitive to the
parameterization than white noise and OU noise, and always manages to excite the oscillator up to a
certain amplitude. White noise and OU noise only work well in the high- and low-frequency regime,
respectively.
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F.2 BOUNDED INTEGRATOR ENVIRONMENT

The bounded integrator environment of Sec. 6 has very simple dynamics:

st+1 = clip(st + at,−c, c), (39)

where s0 = 0 and c is the parameter determining the size of the environment. Thus, the “area” in
Fig. 5 is given by c2. In Fig. 1, this parameter is fixed at c = 250, and in Fig. F.2 these trajectories
(center row) are compared to trajectories on a smaller (top row) and a larger environment (bottom
row), in a similar spirit to Fig. F.1.

c
=

25

White noise Pink noise OU noise

c
=

25
0

c
=

10
00

Figure F.2: Trajectories on the bounded integrator environment. For each of the 3 environment sizes
c ∈ {25, 250, 1000}, we sample 20 action noise signals of length 1000 steps of white noise, pink
noise, and OU noise. We can see what was already shown in Fig. 5: pink noise is less sensitive to the
parameterization than white noise (which is too slow to explore the medium and large environments)
and OU noise (which, on the medium and small environments, gets stuck at the edges and fails to
explore the interior).

G ADDITIONAL ENVIRONMENTS

In addition to the environments described in Sec. C, we also ran experiments on several tasks from
the “MuJoCo-Maze” suite (https://github.com/kngwyu/mujoco-maze). The results are
shown in Fig. G.1 in the form of learning curves and the average performance (cf. Sec. B.2) of each
noise type over all six environments. We tested white noise, pink noise, and (variance-corrected,
cf. Sec. A.1) Ornstein-Uhlenbeck noise, and trained MPO and SAC on all environments for 106
interactions using 20 seeds. Pink noise again outperforms white noise and Ornstein-Uhlenbeck noise
as a default choice across environments. These experiments were conducted to verify our method on

26

https://github.com/kngwyu/mujoco-maze


Published as a conference paper at ICLR 2023 Appendix

0

1

R
et

ur
n

MPO

WN
OU
Pink

SAC MPO SAC

0

20

R
et

ur
n

MPO SAC MPO SAC

0 1
t ×106

0

20

R
et

ur
n

MPO

0 1
t ×106

SAC

0 1
t ×106

MPO

0 1
t ×106

SAC

Point, U-Maze Point, 4-Rooms

Swimmer, U-Maze Swimmer, 4-Rooms

Ant, U-Maze Ant, 4-Rooms

WN Pink OU

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Avg. performance

Figure G.1: Performances of white noise, pink noise, and OU noise on several “MuJoCo-Maze” tasks
(all with sparse rewards). It can be seen that pink noise is the best default choice of the three, as it has
the highest average performance (Sec. B.2).

a different set of problems and are thus not included in the main analysis. The results provide further
evidence in support of our main takeaway: pink noise makes a very good default action noise.

H DETAILED RESULTS

Final Performance Mean Performance

Environment Agent WN OU Pink WN OU Pink Oracle Anti Gain

Pendulum MPO 311 702 574 247 651 558 670 239 430
SAC 224 350 446 158 283 294 361 158 202

Cartpole (b.) MPO 999 1000 1000 928 940 967 967 928 39
SAC 960 908 958 939 890 941 950 890 59

Cartpole (s.) MPO 703 784 788 535 499 666 666 489 177
SAC 377 608 730 226 459 532 533 159 374

Ball-In-Cup MPO 974 973 978 926 909 948 948 909 39
SAC 976 975 979 930 901 933 941 901 39

MountainCar MPO 13 56 92 13 52 91 92 13 78
SAC 0 90 94 0 89 93 93 0 93

Hopper MPO 25 62 108 14 34 69 69 14 54
SAC 89 94 119 43 53 77 80 43 36

Walker MPO 530 377 448 384 284 363 390 284 106
SAC 593 506 602 437 363 471 472 363 108

Reacher MPO 956 856 966 864 600 871 888 581 306
SAC 955 914 940 776 653 745 776 653 122

Cheetah MPO 666 612 678 481 440 543 543 440 103
SAC 631 577 640 469 439 483 502 439 63

Door MPO 2586 2492 2909 1830 1376 2207 2207 1376 830
SAC 2192 1535 2195 1332 546 1183 1332 546 785

Table H.1: Comparison of final policy performance (see Sec. B.2) and mean performance over the
training process (Sec. 4) on all environments. Results are averaged across seeds, and shown for white
noise (WN), Ornstein-Uhlenbeck noise (OU), and pink noise (Pink) as action noise on MPO and
SAC. Additionally, the Oracle and Anti-Oracle (“Anti”) performances are shown. The gain between
these (rightmost column) represents the difference achievable by changing the noise type, and is the
basis for the “performance gain” measure used in Sec. 4.2.
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